我想更好地理解其中的区别。我在网上找到了很多解释,但它们都倾向于抽象的差异,而不是实际的含义。

Most of my programming experiences has been with CPython (dynamic, interpreted), and Java (static, compiled). However, I understand that there are other kinds of interpreted and compiled languages. Aside from the fact that executable files can be distributed from programs written in compiled languages, are there any advantages/disadvantages to each type? Oftentimes, I hear people arguing that interpreted languages can be used interactively, but I believe that compiled languages can have interactive implementations as well, correct?


当前回答

我猜这是计算机科学中最大的误解之一。 因为解释和编译是完全不同的两件事,我们不能用这种方式进行比较。

编译是将一种语言翻译成另一种语言的过程。编译的类型很少。

编译-将高级语言转换为机器/字节代码(例如:C/ c++ /Java) 翻译——将高级语言翻译成另一种高级语言(例如:TypeScript)

解释是实际执行程序的过程。这可能以几种不同的方式发生。

Machine level interpretation - This interpretation happens to the code which is compiled into machine code. Instructions are directly interpreted by the processor. Programming languages like C/C++ generate machine code, which is executable by the processor. So the processor can directly execute these instructions. Virtual machine level interpretation - This interpretation happens to the code which is not compiled into the machine level (processor support) code, but into some intermediate-level code. This execution is done by another software, which is executed by the processor. At this time actually processor doesn't see our application. It just executing the virtual machine, which is executing our application. Programming languages like Java, Python, C# generate a byte code, which is executable by the virtual interpreter/machine.

所以在一天结束的时候,我们必须明白的是,世界上所有的编程语言都应该在某个时候进行解释。它可以由处理器(硬件)或虚拟机完成。

编译只是将我们编写的人类可理解的高级代码带到机器可理解的硬件/软件级别的过程。

这是完全不同的两件事,我们无法比较。但是这些术语非常适合教给初学者编程语言是如何工作的。

PS: Some programming languages like Java have a hybrid approach to do this. First, compile the high-level code into byte code which is virtual-machine readable. And on the fly, a component called the JIT compiler compiles byte-code into machine code. Specifically, code lines that are executed again and again many times are get translated into the machine language, which makes the interpretation process much faster. Because hardware processor is always much faster than virtual interpreter/processor.

Java JIT编译器如何工作

其他回答

编译语言是这样一种语言:程序一旦编译,就用目标机器的指令来表达。例如,源代码中的加法“+”操作可以直接转换为机器代码中的“ADD”指令。

解释型语言是指指令不直接由目标机器执行,而是由其他程序(通常用本机语言编写)读取和执行的语言。例如,相同的“+”操作将在运行时被解释器识别,然后调用它自己的“add(a,b)”函数,并使用适当的参数,然后执行机器代码“add”指令。

你可以在编译语言中做你在解释语言中可以做的任何事情,反之亦然——它们都是图灵完备的。然而,这两种方法在实施和使用方面都有优点和缺点。

我将完全概括(纯粹主义者原谅我!),但大致来说,以下是编译语言的优点:

通过直接使用目标计算机的本机代码获得更快的性能 有机会在编译阶段应用相当强大的优化

下面是解释型语言的优点:

更容易实现(编写好的编译器非常困难!!) 不需要运行编译阶段:可以直接“动态”执行代码 是否可以更方便地使用动态语言

注意,字节码编译等现代技术增加了一些额外的复杂性——这里发生的情况是,编译器的目标是一个与底层硬件不同的“虚拟机”。这些虚拟机指令可以在稍后阶段再次编译,以获得本机代码(例如,由Java JVM JIT编译器完成)。

首先,澄清一下,Java不是完全静态编译和以c++的方式链接的。它被编译成字节码,然后由JVM解释。JVM可以对本机机器语言进行即时编译,但不必这样做。

更重要的是:我认为交互性是主要的实际区别。由于所有内容都是解释的,所以您可以截取一小段代码,解析并根据环境的当前状态运行它。因此,如果您已经执行了初始化变量的代码,则可以访问该变量,等等。它真的很适合函数式风格。

然而,解释成本很高,特别是当您有一个包含大量引用和上下文的大型系统时。根据定义,这是一种浪费,因为相同的代码可能必须解释和优化两次(尽管大多数运行时都为此进行了缓存和优化)。不过,您仍然需要支付运行时成本,并且经常需要运行时环境。您也不太可能看到复杂的过程间优化,因为目前它们的性能还没有充分的交互性。

因此,对于不会有太大变化的大型系统,以及某些语言,更有意义的是预编译和预链接所有内容,做所有可以做的优化。最终会得到一个非常精简的运行时,该运行时已经针对目标机器进行了优化。

至于生成可执行文件,恕我直言,这一点关系不大。通常可以从编译语言创建可执行文件。但是您也可以使用解释语言创建可执行文件,只不过解释器和运行时已经打包在可执行文件中,并且对您隐藏了。这意味着您通常仍然需要支付运行时成本(尽管我确信对于某些语言,有方法将所有内容转换为可执行树)。

我不同意所有的语言都可以互动。某些语言,如C语言,与机器和整个链接结构紧密相连,我不确定您是否能够构建一个有意义的完整的交互式版本

简短的(不精确的)定义:

编译语言:将整个程序立即转换为机器代码,然后由CPU运行机器代码。

解释语言:逐行读取程序,一旦读取一行,CPU就会执行该行的机器指令。

但实际上,现在很少有语言是纯编译或纯解释的,它们通常是混合的。想要更详细的图片描述,请看这个帖子:

编译和解释的区别是什么?

或者是我后来的博客:

https://orangejuiceliberationfront.com/the-difference-between-compiler-and-interpreter/

语言本身既不编译也不解释,只有语言的特定实现才是。Java就是一个很好的例子。有一个基于字节码的平台(JVM)、一个本机编译器(gcj)和一个用于Java超集(bsh)的互用器。那么Java现在是什么呢?字节码编译,本机编译还是解释?

其他既编译又解释的语言有Scala、Haskell或Ocaml。每种语言都有一个交互式解释器,以及一个字节码或本机机器码的编译器。

所以一般来说,用“编译型”和“解释型”来划分语言并没有多大意义。

从http://www.quora.com/What-is-the-difference-between-compiled-and-interpreted-programming-languages

There is no difference, because “compiled programming language” and “interpreted programming language” aren’t meaningful concepts. Any programming language, and I really mean any, can be interpreted or compiled. Thus, interpretation and compilation are implementation techniques, not attributes of languages. Interpretation is a technique whereby another program, the interpreter, performs operations on behalf of the program being interpreted in order to run it. If you can imagine reading a program and doing what it says to do step-by-step, say on a piece of scratch paper, that’s just what an interpreter does as well. A common reason to interpret a program is that interpreters are relatively easy to write. Another reason is that an interpreter can monitor what a program tries to do as it runs, to enforce a policy, say, for security. Compilation is a technique whereby a program written in one language (the “source language”) is translated into a program in another language (the “object language”), which hopefully means the same thing as the original program. While doing the translation, it is common for the compiler to also try to transform the program in ways that will make the object program faster (without changing its meaning!). A common reason to compile a program is that there’s some good way to run programs in the object language quickly and without the overhead of interpreting the source language along the way. You may have guessed, based on the above definitions, that these two implementation techniques are not mutually exclusive, and may even be complementary. Traditionally, the object language of a compiler was machine code or something similar, which refers to any number of programming languages understood by particular computer CPUs. The machine code would then run “on the metal” (though one might see, if one looks closely enough, that the “metal” works a lot like an interpreter). Today, however, it’s very common to use a compiler to generate object code that is meant to be interpreted—for example, this is how Java used to (and sometimes still does) work. There are compilers that translate other languages to JavaScript, which is then often run in a web browser, which might interpret the JavaScript, or compile it a virtual machine or native code. We also have interpreters for machine code, which can be used to emulate one kind of hardware on another. Or, one might use a compiler to generate object code that is then the source code for another compiler, which might even compile code in memory just in time for it to run, which in turn . . . you get the idea. There are many ways to combine these concepts.