我正在寻找一个函数,它将两个列表作为输入,并返回Pearson相关性,以及相关性的重要性。


当前回答

Pearson相关性可以用numpy的corrcoef来计算。

import numpy
numpy.corrcoef(list1, list2)[0, 1]

其他回答

嗯,很多回复的代码都很长,很难读…

我建议在处理数组时使用numpy及其漂亮的特性:

import numpy as np
def pcc(X, Y):
   ''' Compute Pearson Correlation Coefficient. '''
   # Normalise X and Y
   X -= X.mean(0)
   Y -= Y.mean(0)
   # Standardise X and Y
   X /= X.std(0)
   Y /= Y.std(0)
   # Compute mean product
   return np.mean(X*Y)

# Using it on a random example
from random import random
X = np.array([random() for x in xrange(100)])
Y = np.array([random() for x in xrange(100)])
pcc(X, Y)

本文给出了一种基于稀疏向量的pearson相关的实现方法。这里的向量表示为(index, value)表示的元组列表。两个稀疏向量可以是不同的长度,但总的向量大小必须是相同的。这对于文本挖掘应用程序非常有用,其中向量大小非常大,因为大多数特征都是单词包,因此通常使用稀疏向量执行计算。

def get_pearson_corelation(self, first_feature_vector=[], second_feature_vector=[], length_of_featureset=0):
    indexed_feature_dict = {}
    if first_feature_vector == [] or second_feature_vector == [] or length_of_featureset == 0:
        raise ValueError("Empty feature vectors or zero length of featureset in get_pearson_corelation")

    sum_a = sum(value for index, value in first_feature_vector)
    sum_b = sum(value for index, value in second_feature_vector)

    avg_a = float(sum_a) / length_of_featureset
    avg_b = float(sum_b) / length_of_featureset

    mean_sq_error_a = sqrt((sum((value - avg_a) ** 2 for index, value in first_feature_vector)) + ((
        length_of_featureset - len(first_feature_vector)) * ((0 - avg_a) ** 2)))
    mean_sq_error_b = sqrt((sum((value - avg_b) ** 2 for index, value in second_feature_vector)) + ((
        length_of_featureset - len(second_feature_vector)) * ((0 - avg_b) ** 2)))

    covariance_a_b = 0

    #calculate covariance for the sparse vectors
    for tuple in first_feature_vector:
        if len(tuple) != 2:
            raise ValueError("Invalid feature frequency tuple in featureVector: %s") % (tuple,)
        indexed_feature_dict[tuple[0]] = tuple[1]
    count_of_features = 0
    for tuple in second_feature_vector:
        count_of_features += 1
        if len(tuple) != 2:
            raise ValueError("Invalid feature frequency tuple in featureVector: %s") % (tuple,)
        if tuple[0] in indexed_feature_dict:
            covariance_a_b += ((indexed_feature_dict[tuple[0]] - avg_a) * (tuple[1] - avg_b))
            del (indexed_feature_dict[tuple[0]])
        else:
            covariance_a_b += (0 - avg_a) * (tuple[1] - avg_b)

    for index in indexed_feature_dict:
        count_of_features += 1
        covariance_a_b += (indexed_feature_dict[index] - avg_a) * (0 - avg_b)

    #adjust covariance with rest of vector with 0 value
    covariance_a_b += (length_of_featureset - count_of_features) * -avg_a * -avg_b

    if mean_sq_error_a == 0 or mean_sq_error_b == 0:
        return -1
    else:
        return float(covariance_a_b) / (mean_sq_error_a * mean_sq_error_b)

单元测试:

def test_get_get_pearson_corelation(self):
    vector_a = [(1, 1), (2, 2), (3, 3)]
    vector_b = [(1, 1), (2, 5), (3, 7)]
    self.assertAlmostEquals(self.sim_calculator.get_pearson_corelation(vector_a, vector_b, 3), 0.981980506062, 3, None, None)

    vector_a = [(1, 1), (2, 2), (3, 3)]
    vector_b = [(1, 1), (2, 5), (3, 7), (4, 14)]
    self.assertAlmostEquals(self.sim_calculator.get_pearson_corelation(vector_a, vector_b, 5), -0.0137089240555, 3, None, None)

下面是mkh答案的一个变体,比它运行得快得多,还有scipy.stats。皮尔逊,使用numba。

import numba

@numba.jit
def corr(data1, data2):
    M = data1.size

    sum1 = 0.
    sum2 = 0.
    for i in range(M):
        sum1 += data1[i]
        sum2 += data2[i]
    mean1 = sum1 / M
    mean2 = sum2 / M

    var_sum1 = 0.
    var_sum2 = 0.
    cross_sum = 0.
    for i in range(M):
        var_sum1 += (data1[i] - mean1) ** 2
        var_sum2 += (data2[i] - mean2) ** 2
        cross_sum += (data1[i] * data2[i])

    std1 = (var_sum1 / M) ** .5
    std2 = (var_sum2 / M) ** .5
    cross_mean = cross_sum / M

    return (cross_mean - mean1 * mean2) / (std1 * std2)
def correlation_score(y_true, y_pred):
    """Scores the predictions according to the competition rules. 
    
    It is assumed that the predictions are not constant.
    
    Returns the average of each sample's Pearson correlation coefficient"""
    
    y2 = y_pred.copy()
    y2 -= y2.mean(axis=0);    y2 /= y2.std(axis=0) 
    y1 = y_true.copy(); 
    y1 -= y1.mean(axis=0);    y1 /= y1.std(axis=0) 
        
    c = (y1*y2).mean().mean()# Correlation for rescaled matrices is just matrix product and average 
        
    return c

这是使用numpy的Pearson Correlation函数的实现:


def corr(data1, data2):
    "data1 & data2 should be numpy arrays."
    mean1 = data1.mean() 
    mean2 = data2.mean()
    std1 = data1.std()
    std2 = data2.std()

#     corr = ((data1-mean1)*(data2-mean2)).mean()/(std1*std2)
    corr = ((data1*data2).mean()-mean1*mean2)/(std1*std2)
    return corr