我正在寻找一个函数,它将两个列表作为输入,并返回Pearson相关性,以及相关性的重要性。
当前回答
对此,我有一个非常简单易懂的解决方案。对于两个长度相等的数组,Pearson系数可以很容易地计算如下:
def manual_pearson(a,b):
"""
Accepts two arrays of equal length, and computes correlation coefficient.
Numerator is the sum of product of (a - a_avg) and (b - b_avg),
while denominator is the product of a_std and b_std multiplied by
length of array.
"""
a_avg, b_avg = np.average(a), np.average(b)
a_stdev, b_stdev = np.std(a), np.std(b)
n = len(a)
denominator = a_stdev * b_stdev * n
numerator = np.sum(np.multiply(a-a_avg, b-b_avg))
p_coef = numerator/denominator
return p_coef
其他回答
def pearson(x,y):
n=len(x)
vals=range(n)
sumx=sum([float(x[i]) for i in vals])
sumy=sum([float(y[i]) for i in vals])
sumxSq=sum([x[i]**2.0 for i in vals])
sumySq=sum([y[i]**2.0 for i in vals])
pSum=sum([x[i]*y[i] for i in vals])
# Calculating Pearson correlation
num=pSum-(sumx*sumy/n)
den=((sumxSq-pow(sumx,2)/n)*(sumySq-pow(sumy,2)/n))**.5
if den==0: return 0
r=num/den
return r
嗯,很多回复的代码都很长,很难读…
我建议在处理数组时使用numpy及其漂亮的特性:
import numpy as np
def pcc(X, Y):
''' Compute Pearson Correlation Coefficient. '''
# Normalise X and Y
X -= X.mean(0)
Y -= Y.mean(0)
# Standardise X and Y
X /= X.std(0)
Y /= Y.std(0)
# Compute mean product
return np.mean(X*Y)
# Using it on a random example
from random import random
X = np.array([random() for x in xrange(100)])
Y = np.array([random() for x in xrange(100)])
pcc(X, Y)
你可以看看这篇文章。这是一个使用pandas库(适用于Python)根据多个文件的历史外汇货币对数据计算相关性的示例,然后使用seaborn库生成热图图。
http://www.tradinggeeks.net/2015/08/calculating-correlation-in-python/
与其依赖numpy/scipy,我认为我的答案应该是最容易编码和理解计算Pearson相关系数(PCC)的步骤。
import math
# calculates the mean
def mean(x):
sum = 0.0
for i in x:
sum += i
return sum / len(x)
# calculates the sample standard deviation
def sampleStandardDeviation(x):
sumv = 0.0
for i in x:
sumv += (i - mean(x))**2
return math.sqrt(sumv/(len(x)-1))
# calculates the PCC using both the 2 functions above
def pearson(x,y):
scorex = []
scorey = []
for i in x:
scorex.append((i - mean(x))/sampleStandardDeviation(x))
for j in y:
scorey.append((j - mean(y))/sampleStandardDeviation(y))
# multiplies both lists together into 1 list (hence zip) and sums the whole list
return (sum([i*j for i,j in zip(scorex,scorey)]))/(len(x)-1)
PCC的意义基本上是向你展示两个变量/列表的相关性有多强。 需要注意的是,PCC值的范围是-1到1。 0到1之间的值表示正相关。 0值=最高变异(没有任何相关性)。 -1到0之间的值表示负相关。
对此,我有一个非常简单易懂的解决方案。对于两个长度相等的数组,Pearson系数可以很容易地计算如下:
def manual_pearson(a,b):
"""
Accepts two arrays of equal length, and computes correlation coefficient.
Numerator is the sum of product of (a - a_avg) and (b - b_avg),
while denominator is the product of a_std and b_std multiplied by
length of array.
"""
a_avg, b_avg = np.average(a), np.average(b)
a_stdev, b_stdev = np.std(a), np.std(b)
n = len(a)
denominator = a_stdev * b_stdev * n
numerator = np.sum(np.multiply(a-a_avg, b-b_avg))
p_coef = numerator/denominator
return p_coef