我总是发现其他人的创业简介文件对这门语言既有用又有指导意义。此外,虽然我对Bash和Vim进行了一些定制,但对R没有任何定制。

例如,我一直想要的一件事是在窗口终端中输入和输出文本的颜色不同,甚至可能是语法高亮显示。


当前回答

我发现两个函数是非常必要的:首先,当我在几个函数上设置debug()并且我已经解决了错误,所以我想要undebug()所有函数-而不是一个接一个。在这里添加的undebug_all()函数作为接受的答案是最好的。

其次,当我定义了许多函数并正在寻找一个特定的变量名时,很难在ls()的所有结果中找到它,包括函数名。这里发布的lsnofun()函数真的很好。

其他回答

这是我的。我总是使用主要的cran存储库,并且有代码可以使它很容易地获得开发包中的代码。

.First <- function() {
    library(graphics)
    options("repos" = c(CRAN = "http://cran.r-project.org/"))
    options("device" = "quartz")
}

packages <- list(
  "describedisplay" = "~/ggobi/describedisplay",
  "linval" = "~/ggobi/linval", 

  "ggplot2" =  "~/documents/ggplot/ggplot",
  "qtpaint" =  "~/documents/cranvas/qtpaint", 
  "tourr" =    "~/documents/tour/tourr", 
  "tourrgui" = "~/documents/tour/tourr-gui", 
  "prodplot" = "~/documents/categorical-grammar"
)

l <- function(pkg) {
  pkg <- tolower(deparse(substitute(pkg)))
  if (is.null(packages[[pkg]])) {
    path <- file.path("~/documents", pkg, pkg)
  } else {
    path <- packages[pkg]
  }

  source(file.path(path, "load.r"))  
}

test <- function(path) {
  path <- deparse(substitute(path))
  source(file.path("~/documents", path, path, "test.r"))  
}

这是我的。没什么太创新的。为什么要选择特定的选项:

I went with setting a default for stringsAsFactors because I find it extremely draining to pass it as an argument each time I read a CSV in. That said, it has already caused me some minor vexation when using code written on my usual computer on a computer which did not have my .Rprofile. I'm keeping it, though, as the troubles it has caused pale in comparison to the troubles not having it set everyday used to cause. If you don't load the utils package before options(error=recover), it cannot find recover when placed inside an interactive() block. I used .db for my dropbox setting rather than options(dropbox=...) because I use it all the time inside file.path and it saves much typing. The leading . keeps it from appearing with ls().

话不多说:

if(interactive()) {
    options(stringsAsFactors=FALSE)
    options(max.print=50)
    options(repos="http://cran.mirrors.hoobly.com")
}

.db <- "~/Dropbox"
# `=` <- function(...) stop("Assignment by = disabled, use <- instead")
options(BingMapsKey="blahblahblah") # Used by taRifx.geo::geocode()

.First <- function() {
    if(interactive()) {
        require(functional)
        require(taRifx)
        require(taRifx.geo)
        require(ggplot2)
        require(foreign)
        require(R.utils)
        require(stringr)
        require(reshape2)
        require(devtools)
        require(codetools)
        require(testthat)
        require(utils)
        options(error=recover)
    }
}

我喜欢保存我的R命令历史,并在每次运行R命令时都可用:

在shell或.bashrc中:

export R_HISTFILE=~/.Rhistory

在.Rprofile:

.Last <- function() {
        if (!any(commandArgs()=='--no-readline') && interactive()){
                require(utils)
                try(savehistory(Sys.getenv("R_HISTFILE")))
        }
}

Stephen Turner关于. rprofiles的帖子有几个有用的别名和启动函数。

我发现自己经常使用他的“ht”和“hh”。

#ht==headtail, i.e., show the first and last 10 items of an object
ht <- function(d) rbind(head(d,10),tail(d,10))

# Show the first 5 rows and first 5 columns of a data frame or matrix
hh <- function(d) d[1:5,1:5]
options(stringsAsFactors=FALSE)

虽然我的. r配置文件中没有这个,因为它可能会破坏我的合作者的代码,但我希望它是默认的。为什么?

1)字符向量使用更少的内存(但只是很少);

2)更重要的是,我们可以避免这样的问题:

> x <- factor(c("a","b","c"))
> x
[1] a b c
Levels: a b c
> x <- c(x, "d")
> x
[1] "1" "2" "3" "d"

and

> x <- factor(c("a","b","c"))
> x[1:2] <- c("c", "d")
Warning message:
In `[<-.factor`(`*tmp*`, 1:2, value = c("c", "d")) :
  invalid factor level, NAs generated

因子在你需要的时候很有用(比如在图中实现排序),但大多数时候都很麻烦。