我总是发现其他人的创业简介文件对这门语言既有用又有指导意义。此外,虽然我对Bash和Vim进行了一些定制,但对R没有任何定制。

例如,我一直想要的一件事是在窗口终端中输入和输出文本的颜色不同,甚至可能是语法高亮显示。


当前回答

我有这个,更动态的技巧来使用全终端宽度,它试图从COLUMNS环境变量中读取(在Linux上):

tryCatch(
  {options(
      width = as.integer(Sys.getenv("COLUMNS")))},
  error = function(err) {
    write("Can't get your terminal width. Put ``export COLUMNS'' in your \
           .bashrc. Or something. Setting width to 120 chars",
           stderr());
    options(width=120)}
)

这样,即使您调整终端窗口的大小,R也将使用全宽度。

其他回答

这是我的。我总是使用主要的cran存储库,并且有代码可以使它很容易地获得开发包中的代码。

.First <- function() {
    library(graphics)
    options("repos" = c(CRAN = "http://cran.r-project.org/"))
    options("device" = "quartz")
}

packages <- list(
  "describedisplay" = "~/ggobi/describedisplay",
  "linval" = "~/ggobi/linval", 

  "ggplot2" =  "~/documents/ggplot/ggplot",
  "qtpaint" =  "~/documents/cranvas/qtpaint", 
  "tourr" =    "~/documents/tour/tourr", 
  "tourrgui" = "~/documents/tour/tourr-gui", 
  "prodplot" = "~/documents/categorical-grammar"
)

l <- function(pkg) {
  pkg <- tolower(deparse(substitute(pkg)))
  if (is.null(packages[[pkg]])) {
    path <- file.path("~/documents", pkg, pkg)
  } else {
    path <- packages[pkg]
  }

  source(file.path(path, "load.r"))  
}

test <- function(path) {
  path <- deparse(substitute(path))
  source(file.path("~/documents", path, path, "test.r"))  
}
sink(file = 'R.log', split=T)

options(scipen=5)

.ls.objects <- function (pos = 1, pattern, order.by = "Size", decreasing=TRUE, head =     TRUE, n = 10) {
  # based on postings by Petr Pikal and David Hinds to the r-help list in 2004
  # modified by: Dirk Eddelbuettel (http://stackoverflow.com/questions/1358003/tricks-to-    manage-the-available-memory-in-an-r-session) 
  # I then gave it a few tweaks (show size as megabytes and use defaults that I like)
  # a data frame of the objects and their associated storage needs.
  napply <- function(names, fn) sapply(names, function(x)
          fn(get(x, pos = pos)))
  names <- ls(pos = pos, pattern = pattern)
  obj.class <- napply(names, function(x) as.character(class(x))[1])
  obj.mode <- napply(names, mode)
  obj.type <- ifelse(is.na(obj.class), obj.mode, obj.class)
  obj.size <- napply(names, object.size) / 10^6 # megabytes
  obj.dim <- t(napply(names, function(x)
            as.numeric(dim(x))[1:2]))
  vec <- is.na(obj.dim)[, 1] & (obj.type != "function")
  obj.dim[vec, 1] <- napply(names, length)[vec]
  out <- data.frame(obj.type, obj.size, obj.dim)
  names(out) <- c("Type", "Size", "Rows", "Columns")
  out <- out[order(out[[order.by]], decreasing=decreasing), ]
  if (head)
    out <- head(out, n)
  out
}

我喜欢保存我的R命令历史,并在每次运行R命令时都可用:

在shell或.bashrc中:

export R_HISTFILE=~/.Rhistory

在.Rprofile:

.Last <- function() {
        if (!any(commandArgs()=='--no-readline') && interactive()){
                require(utils)
                try(savehistory(Sys.getenv("R_HISTFILE")))
        }
}

我讨厌每次都输入“头”、“摘要”、“名字”这些完整的单词,所以我用别名。

你可以在你的. rprofile文件中放入别名,但是你必须使用函数的完整路径(例如utils::head),否则它将无法工作。

# aliases
s <- base::summary
h <- utils::head
n <- base::names

编辑:回答你的问题,你可以使用显色包在终端中有不同的颜色。太酷了!: -)

options(stringsAsFactors=FALSE)

虽然我的. r配置文件中没有这个,因为它可能会破坏我的合作者的代码,但我希望它是默认的。为什么?

1)字符向量使用更少的内存(但只是很少);

2)更重要的是,我们可以避免这样的问题:

> x <- factor(c("a","b","c"))
> x
[1] a b c
Levels: a b c
> x <- c(x, "d")
> x
[1] "1" "2" "3" "d"

and

> x <- factor(c("a","b","c"))
> x[1:2] <- c("c", "d")
Warning message:
In `[<-.factor`(`*tmp*`, 1:2, value = c("c", "d")) :
  invalid factor level, NAs generated

因子在你需要的时候很有用(比如在图中实现排序),但大多数时候都很麻烦。