与经典的getter+setter相比,@property表示法有什么优点?在哪些特定的情况下,程序员应该选择使用其中一种而不是另一种?

属性:

class MyClass(object):
    @property
    def my_attr(self):
        return self._my_attr

    @my_attr.setter
    def my_attr(self, value):
        self._my_attr = value

没有属性:

class MyClass(object):
    def get_my_attr(self):
        return self._my_attr

    def set_my_attr(self, value):
        self._my_attr = value

当前回答

以下是摘自《有效的Python: 90种具体方法来编写更好的Python》(一本令人惊叹的书)的节选。我强烈推荐)。

Things to Remember ✦ Define new class interfaces using simple public attributes and avoid defining setter and getter methods. ✦ Use @property to define special behavior when attributes are accessed on your objects, if necessary. ✦ Follow the rule of least surprise and avoid odd side effects in your @property methods. ✦ Ensure that @property methods are fast; for slow or complex work—especially involving I/O or causing side effects—use normal methods instead. One advanced but common use of @property is transitioning what was once a simple numerical attribute into an on-the-fly calculation. This is extremely helpful because it lets you migrate all existing usage of a class to have new behaviors without requiring any of the call sites to be rewritten (which is especially important if there’s calling code that you don’t control). @property also provides an important stopgap for improving interfaces over time. I especially like @property because it lets you make incremental progress toward a better data model over time. @property is a tool to help you address problems you’ll come across in real-world code. Don’t overuse it. When you find yourself repeatedly extending @property methods, it’s probably time to refactor your class instead of further paving over your code’s poor design. ✦ Use @property to give existing instance attributes new functionality. ✦ Make incremental progress toward better data models by using @property. ✦ Consider refactoring a class and all call sites when you find yourself using @property too heavily.

其他回答

简单的答案是:properties轻松获胜。总是这样。

有时需要getter和setter,但即使这样,我也会将它们“隐藏”到外部世界。在Python中有很多方法可以做到这一点(getattr, setattr, __getattribute__,等等…,但最简洁明了的是:

def set_email(self, value):
    if '@' not in value:
        raise Exception("This doesn't look like an email address.")
    self._email = value

def get_email(self):
    return self._email

email = property(get_email, set_email)

下面是一篇简短的文章,介绍Python中的getter和setter主题。

在Python中,你不会仅仅为了好玩而使用getter或setter或属性。首先只使用属性,然后在需要时,最终迁移到属性,而不必使用类更改代码。

确实有很多带有.py扩展名的代码在任何地方都使用getter和setter、继承和无意义的类,例如一个简单的元组就可以了,但这是人们使用Python用c++或Java编写的代码。

这不是Python代码。

在复杂的项目中,我更喜欢使用带有显式setter函数的只读属性(或getter):

class MyClass(object):
...        
@property
def my_attr(self):
    ...

def set_my_attr(self, value):
    ...

在长期存在的项目中,调试和重构比编写代码本身花费更多的时间。使用@property有几个缺点。Setter,使调试更加困难:

1) python允许为现有对象创建新属性。这使得下面的打印错误很难追踪:

my_object.my_atttr = 4.

如果你的目标是一个复杂的算法,那么你将花费相当多的时间试图找出它不收敛的原因(注意上面一行中额外的“t”)

2) setter有时可能演变成一个复杂而缓慢的方法(例如击中数据库)。对于另一个开发人员来说,很难弄清楚为什么下面的函数非常慢。他可能会花很多时间分析do_something()方法,而my_object。My_attr = 4。其实是减速的原因:

def slow_function(my_object):
    my_object.my_attr = 4.
    my_object.do_something()

使用属性可以让您从普通的属性访问开始,然后在必要时使用getter和setter对其进行备份。

对我来说,使用属性更直观,更适合大多数代码。

比较

o.x = 5
ox = o.x

vs.

o.setX(5)
ox = o.getX()

对我来说很明显,更容易理解。此外,属性允许私有变量更容易。