有没有一种有效的算法来检测有向图中的循环?
我有一个有向图,表示需要执行的作业计划,作业是一个节点,依赖项是一个边。我需要检测这个图中导致循环依赖关系的循环的错误情况。
有没有一种有效的算法来检测有向图中的循环?
我有一个有向图,表示需要执行的作业计划,作业是一个节点,依赖项是一个边。我需要检测这个图中导致循环依赖关系的循环的错误情况。
当前回答
Tarjan的强连通分量算法的时间复杂度为O(|E| + |V|)。
有关其他算法,请参见维基百科上的强连接组件。
其他回答
根据Cormen et al., Introduction to Algorithms (CLRS)引理22.11:
有向图G是无环的当且仅当深度优先搜索G没有得到后边。
在几个回答中已经提到了这一点;在这里,我还将提供一个基于CLRS第22章的代码示例。示例图如下所示。
CLRS深度优先搜索的伪代码如下:
在CLRS图22.4中的示例中,图由两棵DFS树组成:一棵由节点u、v、x和y组成,另一棵由节点w和z组成。每棵树都包含一条后边:一条从x到v,另一条从z到z(一个自循环)。
关键的实现是,在DFS-VISIT函数中,当在u的邻居v上迭代时,遇到一个带有灰色的节点时,就会遇到后边缘。
下面的Python代码是CLRS伪代码的改编,添加了一个if子句,用于检测周期:
import collections
class Graph(object):
def __init__(self, edges):
self.edges = edges
self.adj = Graph._build_adjacency_list(edges)
@staticmethod
def _build_adjacency_list(edges):
adj = collections.defaultdict(list)
for edge in edges:
adj[edge[0]].append(edge[1])
adj[edge[1]] # side effect only
return adj
def dfs(G):
discovered = set()
finished = set()
for u in G.adj:
if u not in discovered and u not in finished:
discovered, finished = dfs_visit(G, u, discovered, finished)
def dfs_visit(G, u, discovered, finished):
discovered.add(u)
for v in G.adj[u]:
# Detect cycles
if v in discovered:
print(f"Cycle detected: found a back edge from {u} to {v}.")
break
# Recurse into DFS tree
if v not in finished:
dfs_visit(G, v, discovered, finished)
discovered.remove(u)
finished.add(u)
return discovered, finished
if __name__ == "__main__":
G = Graph([
('u', 'v'),
('u', 'x'),
('v', 'y'),
('w', 'y'),
('w', 'z'),
('x', 'v'),
('y', 'x'),
('z', 'z')])
dfs(G)
注意,在本例中,CLRS伪代码中的时间没有被捕获,因为我们只对检测周期感兴趣。还有一些样板代码,用于从边列表构建图的邻接表表示。
当这个脚本执行时,它输出如下:
Cycle detected: found a back edge from x to v.
Cycle detected: found a back edge from z to z.
这些正是CLRS图22.4示例中的后边缘。
There is no algorithm which can find all the cycles in a directed graph in polynomial time. Suppose, the directed graph has n nodes and every pair of the nodes has connections to each other which means you have a complete graph. So any non-empty subset of these n nodes indicates a cycle and there are 2^n-1 number of such subsets. So no polynomial time algorithm exists. So suppose you have an efficient (non-stupid) algorithm which can tell you the number of directed cycles in a graph, you can first find the strong connected components, then applying your algorithm on these connected components. Since cycles only exist within the components and not between them.
Tarjan的强连通分量算法的时间复杂度为O(|E| + |V|)。
有关其他算法,请参见维基百科上的强连接组件。
假设这是一个作业时间表,我怀疑在某些时候您会将它们按照建议的执行顺序进行排序。
如果是这种情况,那么拓扑排序实现在任何情况下都可以检测到循环。UNIX tsort当然可以。因此,我认为在三步排序的同时检测循环比在单独的步骤中检测更有效。
因此,问题可能变成“我如何最有效地进行tsort”,而不是“我如何最有效地检测循环”。答案可能是“使用图书馆”,但如果没有下面的维基百科文章:
http://en.wikipedia.org/wiki/Topological_sorting
有一种算法的伪代码,以及来自Tarjan的另一种算法的简要描述。两者都具有O(|V| + |E|)时间复杂度。
如果你不能给节点添加一个“被访问过”的属性,使用一个集合(或者映射),把所有被访问过的节点添加到集合中,除非它们已经在集合中。使用唯一的键或对象的地址作为“键”。
这还为您提供了关于循环依赖项的“根”节点的信息,当用户必须修复问题时,这些信息将派上用场。
另一个解决方案是尝试找到下一个要执行的依赖项。为此,您必须有一个可以记住您现在在哪里以及接下来需要做什么的堆栈。在执行依赖项之前,检查它是否已经在此堆栈上。如果是,你就找到了一个循环。
虽然这看起来可能有O(N*M)的复杂度,但你必须记住,堆栈的深度非常有限(所以N很小),而且随着你可以检查为“已执行”的每个依赖项,M会变得越来越小,加上你可以在找到叶子时停止搜索(所以你永远不必检查每个节点-> M也会很小)。
在MetaMake中,我将图表创建为列表列表,然后在执行它们时删除每个节点,这自然地减少了搜索量。实际上,我从来不需要运行一个独立的检查,这一切都是在正常执行过程中自动发生的。
如果你需要一个“仅测试”模式,只需添加一个“干运行”标志,它禁止实际作业的执行。