*args和**kwargs是什么意思?
def foo(x, y, *args):
def bar(x, y, **kwargs):
*args和**kwargs是什么意思?
def foo(x, y, *args):
def bar(x, y, **kwargs):
当前回答
带*Args和**kwargs的“无限”Args
*args和**kwargs只是向函数输入无限字符的一种方式,例如:
def print_all(*args, **kwargs):
print(args) # print any number of arguments like: "print_all("foo", "bar")"
print(kwargs.get("to_print")) # print the value of the keyworded argument "to_print"
# example:
print_all("Hello", "World", to_print="!")
# will print:
"""
('Hello', 'World')
!
"""
其他回答
**(双星)和*(星)对参数有什么作用?
它们允许定义函数以接受,并允许用户传递任意数量的参数、位置(*)和关键字(**)。
定义函数
*args允许任意数量的可选位置参数(参数),这些参数将分配给名为args的元组。
**kwargs允许任意数量的可选关键字参数(参数),这些参数将在名为kwargs的dict中。
您可以(也应该)选择任何合适的名称,但如果目的是让参数具有非特定语义,args和kwargs是标准名称。
扩展,传递任意数量的参数
您还可以使用*args和**kwargs分别从列表(或任何可迭代的)和dicts(或任何映射)传递参数。
接收参数的函数不必知道它们正在扩展。
例如,Python 2的xrange不明确期望*args,但因为它接受3个整数作为参数:
>>> x = xrange(3) # create our *args - an iterable of 3 integers
>>> xrange(*x) # expand here
xrange(0, 2, 2)
作为另一个例子,我们可以在str.format中使用dict扩展:
>>> foo = 'FOO'
>>> bar = 'BAR'
>>> 'this is foo, {foo} and bar, {bar}'.format(**locals())
'this is foo, FOO and bar, BAR'
Python 3中的新功能:使用仅关键字的参数定义函数
您可以在*args之后使用仅关键字的参数,例如,在这里,kwarg2必须作为关键字参数给出,而不是位置:
def foo(arg, kwarg=None, *args, kwarg2=None, **kwargs):
return arg, kwarg, args, kwarg2, kwargs
用法:
>>> foo(1,2,3,4,5,kwarg2='kwarg2', bar='bar', baz='baz')
(1, 2, (3, 4, 5), 'kwarg2', {'bar': 'bar', 'baz': 'baz'})
此外,*可以单独使用,表示后面只有关键字参数,而不允许无限制的位置参数。
def foo(arg, kwarg=None, *, kwarg2=None, **kwargs):
return arg, kwarg, kwarg2, kwargs
这里,kwarg2也必须是显式命名的关键字参数:
>>> foo(1,2,kwarg2='kwarg2', foo='foo', bar='bar')
(1, 2, 'kwarg2', {'foo': 'foo', 'bar': 'bar'})
而且我们不能再接受无限制的位置参数,因为我们没有*args*:
>>> foo(1,2,3,4,5, kwarg2='kwarg2', foo='foo', bar='bar')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: foo() takes from 1 to 2 positional arguments
but 5 positional arguments (and 1 keyword-only argument) were given
同样,更简单地说,这里我们要求kwarg按名称而不是按位置给出:
def bar(*, kwarg=None):
return kwarg
在这个例子中,我们看到,如果我们试图在位置上传递kwarg,我们会得到一个错误:
>>> bar('kwarg')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: bar() takes 0 positional arguments but 1 was given
我们必须将kwarg参数作为关键字参数显式传递。
>>> bar(kwarg='kwarg')
'kwarg'
Python 2兼容演示
*args(通常称为“星号args”)和**kwargs(星号可以通过表示“kwargs”来暗示,但要明确表示为“双星kwargs)是Python使用*和**表示法的常见习惯用法。这些特定的变量名是不需要的(例如,您可以使用*foos和**bars),但背离惯例可能会激怒您的Python程序员。
当我们不知道函数将接收什么或传递多少参数时,我们通常会使用这些参数,有时甚至在单独命名每个变量时,也会变得非常混乱和冗余(但这是一种通常显式优于隐式的情况)。
示例1
以下函数描述如何使用它们,并演示其行为。请注意,命名的b参数将被前面的第二个位置参数使用:
def foo(a, b=10, *args, **kwargs):
'''
this function takes required argument a, not required keyword argument b
and any number of unknown positional arguments and keyword arguments after
'''
print('a is a required argument, and its value is {0}'.format(a))
print('b not required, its default value is 10, actual value: {0}'.format(b))
# we can inspect the unknown arguments we were passed:
# - args:
print('args is of type {0} and length {1}'.format(type(args), len(args)))
for arg in args:
print('unknown arg: {0}'.format(arg))
# - kwargs:
print('kwargs is of type {0} and length {1}'.format(type(kwargs),
len(kwargs)))
for kw, arg in kwargs.items():
print('unknown kwarg - kw: {0}, arg: {1}'.format(kw, arg))
# But we don't have to know anything about them
# to pass them to other functions.
print('Args or kwargs can be passed without knowing what they are.')
# max can take two or more positional args: max(a, b, c...)
print('e.g. max(a, b, *args) \n{0}'.format(
max(a, b, *args)))
kweg = 'dict({0})'.format( # named args same as unknown kwargs
', '.join('{k}={v}'.format(k=k, v=v)
for k, v in sorted(kwargs.items())))
print('e.g. dict(**kwargs) (same as {kweg}) returns: \n{0}'.format(
dict(**kwargs), kweg=kweg))
我们可以通过help(foo)查看函数签名的在线帮助,它告诉我们
foo(a, b=10, *args, **kwargs)
让我们用foo(1,2,3,4,e=5,f=6,g=7)调用这个函数
其打印:
a is a required argument, and its value is 1
b not required, its default value is 10, actual value: 2
args is of type <type 'tuple'> and length 2
unknown arg: 3
unknown arg: 4
kwargs is of type <type 'dict'> and length 3
unknown kwarg - kw: e, arg: 5
unknown kwarg - kw: g, arg: 7
unknown kwarg - kw: f, arg: 6
Args or kwargs can be passed without knowing what they are.
e.g. max(a, b, *args)
4
e.g. dict(**kwargs) (same as dict(e=5, f=6, g=7)) returns:
{'e': 5, 'g': 7, 'f': 6}
示例2
我们也可以使用另一个函数来调用它,我们只需在其中提供一个:
def bar(a):
b, c, d, e, f = 2, 3, 4, 5, 6
# dumping every local variable into foo as a keyword argument
# by expanding the locals dict:
foo(**locals())
条形图(100)打印:
a is a required argument, and its value is 100
b not required, its default value is 10, actual value: 2
args is of type <type 'tuple'> and length 0
kwargs is of type <type 'dict'> and length 4
unknown kwarg - kw: c, arg: 3
unknown kwarg - kw: e, arg: 5
unknown kwarg - kw: d, arg: 4
unknown kwarg - kw: f, arg: 6
Args or kwargs can be passed without knowing what they are.
e.g. max(a, b, *args)
100
e.g. dict(**kwargs) (same as dict(c=3, d=4, e=5, f=6)) returns:
{'c': 3, 'e': 5, 'd': 4, 'f': 6}
示例3:装饰器中的实际用法
好吧,也许我们还没有看到实用程序。因此,假设您在区分代码之前和/或之后有多个冗余代码的函数。以下命名函数只是用于说明目的的伪代码。
def foo(a, b, c, d=0, e=100):
# imagine this is much more code than a simple function call
preprocess()
differentiating_process_foo(a,b,c,d,e)
# imagine this is much more code than a simple function call
postprocess()
def bar(a, b, c=None, d=0, e=100, f=None):
preprocess()
differentiating_process_bar(a,b,c,d,e,f)
postprocess()
def baz(a, b, c, d, e, f):
... and so on
我们可能能够以不同的方式处理这一点,但我们肯定可以使用装饰器提取冗余,因此下面的示例演示了*args和**kwargs是如何非常有用的:
def decorator(function):
'''function to wrap other functions with a pre- and postprocess'''
@functools.wraps(function) # applies module, name, and docstring to wrapper
def wrapper(*args, **kwargs):
# again, imagine this is complicated, but we only write it once!
preprocess()
function(*args, **kwargs)
postprocess()
return wrapper
现在,每个包装的函数都可以写得更简洁,因为我们已经考虑了冗余:
@decorator
def foo(a, b, c, d=0, e=100):
differentiating_process_foo(a,b,c,d,e)
@decorator
def bar(a, b, c=None, d=0, e=100, f=None):
differentiating_process_bar(a,b,c,d,e,f)
@decorator
def baz(a, b, c=None, d=0, e=100, f=None, g=None):
differentiating_process_baz(a,b,c,d,e,f, g)
@decorator
def quux(a, b, c=None, d=0, e=100, f=None, g=None, h=None):
differentiating_process_quux(a,b,c,d,e,f,g,h)
通过分解我们的代码(*args和**kwargs允许我们这样做),我们减少了代码行,提高了可读性和可维护性,并为程序中的逻辑提供了唯一的规范位置。如果我们需要改变这个结构的任何一部分,我们有一个地方可以做每一个改变。
在Python 3.5中,您还可以在列表、字典、元组和集合显示(有时也称为文字)中使用此语法。参见PEP 488:其他解包概括。
>>> (0, *range(1, 4), 5, *range(6, 8))
(0, 1, 2, 3, 5, 6, 7)
>>> [0, *range(1, 4), 5, *range(6, 8)]
[0, 1, 2, 3, 5, 6, 7]
>>> {0, *range(1, 4), 5, *range(6, 8)}
{0, 1, 2, 3, 5, 6, 7}
>>> d = {'one': 1, 'two': 2, 'three': 3}
>>> e = {'six': 6, 'seven': 7}
>>> {'zero': 0, **d, 'five': 5, **e}
{'five': 5, 'seven': 7, 'two': 2, 'one': 1, 'three': 3, 'six': 6, 'zero': 0}
它还允许在单个函数调用中解包多个可迭代项。
>>> range(*[1, 10], *[2])
range(1, 10, 2)
(感谢mgilson提供PEP链接。)
还值得注意的是,在调用函数时也可以使用*和**。这是一个快捷方式,允许您直接使用列表/元组或字典将多个参数传递给函数。例如,如果您具有以下功能:
def foo(x,y,z):
print("x=" + str(x))
print("y=" + str(y))
print("z=" + str(z))
您可以执行以下操作:
>>> mylist = [1,2,3]
>>> foo(*mylist)
x=1
y=2
z=3
>>> mydict = {'x':1,'y':2,'z':3}
>>> foo(**mydict)
x=1
y=2
z=3
>>> mytuple = (1, 2, 3)
>>> foo(*mytuple)
x=1
y=2
z=3
注意:mydict中的键必须与函数foo的参数完全相同。否则将抛出TypeError:
>>> mydict = {'x':1,'y':2,'z':3,'badnews':9}
>>> foo(**mydict)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: foo() got an unexpected keyword argument 'badnews'
对于那些通过实例学习的人!
*的目的是让您能够定义一个函数,该函数可以接受作为列表提供的任意数量的参数(例如f(*myList))。**的目的是通过提供字典(例如f(**{'x':1,'y':2}))来提供函数的参数。
让我们通过定义一个函数来展示这一点,该函数接受两个正常变量x,y,并且可以接受更多的参数作为myArgs,并且可以接收更多的参数为myKW。稍后,我们将展示如何使用myArgDict喂养y。
def f(x, y, *myArgs, **myKW):
print("# x = {}".format(x))
print("# y = {}".format(y))
print("# myArgs = {}".format(myArgs))
print("# myKW = {}".format(myKW))
print("# ----------------------------------------------------------------------")
# Define a list for demonstration purposes
myList = ["Left", "Right", "Up", "Down"]
# Define a dictionary for demonstration purposes
myDict = {"Wubba": "lubba", "Dub": "dub"}
# Define a dictionary to feed y
myArgDict = {'y': "Why?", 'y0': "Why not?", "q": "Here is a cue!"}
# The 1st elem of myList feeds y
f("myEx", *myList, **myDict)
# x = myEx
# y = Left
# myArgs = ('Right', 'Up', 'Down')
# myKW = {'Wubba': 'lubba', 'Dub': 'dub'}
# ----------------------------------------------------------------------
# y is matched and fed first
# The rest of myArgDict becomes additional arguments feeding myKW
f("myEx", **myArgDict)
# x = myEx
# y = Why?
# myArgs = ()
# myKW = {'y0': 'Why not?', 'q': 'Here is a cue!'}
# ----------------------------------------------------------------------
# The rest of myArgDict becomes additional arguments feeding myArgs
f("myEx", *myArgDict)
# x = myEx
# y = y
# myArgs = ('y0', 'q')
# myKW = {}
# ----------------------------------------------------------------------
# Feed extra arguments manually and append even more from my list
f("myEx", 4, 42, 420, *myList, *myDict, **myDict)
# x = myEx
# y = 4
# myArgs = (42, 420, 'Left', 'Right', 'Up', 'Down', 'Wubba', 'Dub')
# myKW = {'Wubba': 'lubba', 'Dub': 'dub'}
# ----------------------------------------------------------------------
# Without the stars, the entire provided list and dict become x, and y:
f(myList, myDict)
# x = ['Left', 'Right', 'Up', 'Down']
# y = {'Wubba': 'lubba', 'Dub': 'dub'}
# myArgs = ()
# myKW = {}
# ----------------------------------------------------------------------
注意事项
**专为词典保留。非可选参数赋值首先发生。不能两次使用非可选参数。如果适用,**必须始终在*之后。
除了函数调用之外,*args和**kwargs在类层次结构中也很有用,并且还可以避免在Python中编写__init__方法。类似的用法可以在Django代码等框架中看到。
例如
def __init__(self, *args, **kwargs):
for attribute_name, value in zip(self._expected_attributes, args):
setattr(self, attribute_name, value)
if kwargs.has_key(attribute_name):
kwargs.pop(attribute_name)
for attribute_name in kwargs.viewkeys():
setattr(self, attribute_name, kwargs[attribute_name])
子类可以是
class RetailItem(Item):
_expected_attributes = Item._expected_attributes + ['name', 'price', 'category', 'country_of_origin']
class FoodItem(RetailItem):
_expected_attributes = RetailItem._expected_attributes + ['expiry_date']
然后将子类实例化为
food_item = FoodItem(name = 'Jam',
price = 12.0,
category = 'Foods',
country_of_origin = 'US',
expiry_date = datetime.datetime.now())
此外,具有仅对该子类实例有意义的新属性的子类可以调用基类__init__来卸载属性设置。这是通过*args和**kwargs完成的。kwargs主要用于使用命名参数使代码可读。例如
class ElectronicAccessories(RetailItem):
_expected_attributes = RetailItem._expected_attributes + ['specifications']
# Depend on args and kwargs to populate the data as needed.
def __init__(self, specifications = None, *args, **kwargs):
self.specifications = specifications # Rest of attributes will make sense to parent class.
super(ElectronicAccessories, self).__init__(*args, **kwargs)
其可以被初始化为
usb_key = ElectronicAccessories(name = 'Sandisk',
price = '$6.00',
category = 'Electronics',
country_of_origin = 'CN',
specifications = '4GB USB 2.0/USB 3.0')
完整的代码在这里