我目前正在尝试Python 3.7中引入的新数据类结构。我目前被困在试图做一些继承的父类。看起来参数的顺序被我当前的方法搞砸了,比如子类中的bool形参在其他形参之前传递。这将导致一个类型错误。

from dataclasses import dataclass

@dataclass
class Parent:
    name: str
    age: int
    ugly: bool = False

    def print_name(self):
        print(self.name)

    def print_age(self):
        print(self.age)

    def print_id(self):
        print(f'The Name is {self.name} and {self.name} is {self.age} year old')

@dataclass
class Child(Parent):
    school: str
    ugly: bool = True


jack = Parent('jack snr', 32, ugly=True)
jack_son = Child('jack jnr', 12, school = 'havard', ugly=True)

jack.print_id()
jack_son.print_id()

当我运行这段代码时,我得到这个TypeError:

TypeError: non-default argument 'school' follows default argument

我怎么解决这个问题?


当前回答

当您使用Python继承创建数据类时,不能保证所有具有默认值的字段将出现在所有没有默认值的字段之后。

一个简单的解决方案是避免使用多重继承来构造“合并”数据类。相反,我们可以通过对父数据类的字段进行过滤和排序来构建合并的数据类。

试试这个merge_dataclasses()函数:

import dataclasses
import functools
from typing import Iterable, Type


def merge_dataclasses(
    cls_name: str,
    *,
    merge_from: Iterable[Type],
    **kwargs,
):
    """
    Construct a dataclass by merging the fields
    from an arbitrary number of dataclasses.

    Args:
        cls_name: The name of the constructed dataclass.

        merge_from: An iterable of dataclasses
            whose fields should be merged.

        **kwargs: Keyword arguments are passed to
            :py:func:`dataclasses.make_dataclass`.

    Returns:
        Returns a new dataclass
    """
    # Merge the fields from the dataclasses,
    # with field names from later dataclasses overwriting
    # any conflicting predecessor field names.
    each_base_fields = [d.__dataclass_fields__ for d in merge_from]
    merged_fields = functools.reduce(
        lambda x, y: {**x, **y}, each_base_fields
    )

    # We have to reorder all of the fields from all of the dataclasses
    # so that *all* of the fields without defaults appear
    # in the merged dataclass *before* all of the fields with defaults.
    fields_without_defaults = [
        (f.name, f.type, f)
        for f in merged_fields.values()
        if isinstance(f.default, dataclasses._MISSING_TYPE)
    ]
    fields_with_defaults = [
        (f.name, f.type, f)
        for f in merged_fields.values()
        if not isinstance(f.default, dataclasses._MISSING_TYPE)
    ]
    fields = [*fields_without_defaults, *fields_with_defaults]

    return dataclasses.make_dataclass(
        cls_name=cls_name,
        fields=fields,
        **kwargs,
    )

然后,您可以按照如下方式合并数据类。注意,我们可以合并A和B,默认字段B和d被移动到合并的数据类的末尾。

@dataclasses.dataclass
class A:
    a: int
    b: int = 0


@dataclasses.dataclass
class B:
    c: int
    d: int = 0


C = merge_dataclasses(
    "C",
    merge_from=[A, B],
)

# Note that 
print(C(a=1, d=1).__dict__)
# {'a': 1, 'd': 1, 'b': 0, 'c': 0}

当然,这种解决方案的缺陷是C实际上不继承A和B,这意味着您不能使用isinstance()或其他类型断言来验证C的亲本。

其他回答

下面的方法在使用纯python数据类和没有太多样板代码的情况下处理这个问题。

丑陋的:数据类。InitVar[bool]只是作为一个伪字段来帮助我们进行初始化,一旦创建实例就会丢失。而_ugly: bool = field(init=False)是一个实例成员,它不会通过__init__方法初始化,但也可以使用__post_init__方法初始化(你可以在这里找到更多)。

from dataclasses import dataclass, field, InitVar

@dataclass
class Parent:
    name: str
    age: int
    ugly: InitVar[bool]
    _ugly: bool = field(init=False)

    def __post_init__(self, ugly: bool):
        self._ugly = ugly

    def print_name(self):
        print(self.name)

    def print_age(self):
        print(self.age)

    def print_id(self):
        print(f'The Name is {self.name} and {self.name} is {self.age} year old')

@dataclass
class Child(Parent):
    school: str

jack = Parent('jack snr', 32, ugly=True)
jack_son = Child('jack jnr', 12, school='havard', ugly=True)

jack.print_id()
jack_son.print_id()

注意,这使得字段ugly成为强制性的,使其成为可选的。你可以在父类上定义一个类方法,其中包含ugly作为可选参数:

from dataclasses import dataclass, field, InitVar

@dataclass
class Parent:
    name: str
    age: int
    ugly: InitVar[bool]
    _ugly: bool = field(init=False)

    def __post_init__(self, ugly: bool):
        self._ugly = ugly
    
    @classmethod
    def create(cls, ugly=True, **kwargs):
        return cls(ugly=ugly, **kwargs)

    def print_name(self):
        print(self.name)

    def print_age(self):
        print(self.age)

    def print_id(self):
        print(f'The Name is {self.name} and {self.name} is {self.age} year old')

@dataclass
class Child(Parent):
    school: str

jack = Parent.create(name='jack snr', age=32, ugly=False)
jack_son = Child.create(name='jack jnr', age=12, school='harvard')

jack.print_id()
jack_son.print_id()

现在您可以使用create(…)类方法作为创建父/子类的工厂方法,并使用默认值ugly。注意,这种方法必须使用命名参数才能工作。

基于Martijn Pieters的解决方案,我做了以下工作:

1)创建一个实现post_init的混合

from dataclasses import dataclass

no_default = object()


@dataclass
class NoDefaultAttributesPostInitMixin:

    def __post_init__(self):
        for key, value in self.__dict__.items():
            if value is no_default:
                raise TypeError(
                    f"__init__ missing 1 required argument: '{key}'"
                )

2)然后在有继承问题的类中:

from src.utils import no_default, NoDefaultAttributesChild

@dataclass
class MyDataclass(DataclassWithDefaults, NoDefaultAttributesPostInitMixin):
    attr1: str = no_default

编辑:

一段时间后,我也发现这个解决方案与mypy的问题,下面的代码修复这个问题。

from dataclasses import dataclass
from typing import TypeVar, Generic, Union

T = TypeVar("T")


class NoDefault(Generic[T]):
    ...


NoDefaultVar = Union[NoDefault[T], T]
no_default: NoDefault = NoDefault()


@dataclass
class NoDefaultAttributesPostInitMixin:
    def __post_init__(self):
        for key, value in self.__dict__.items():
            if value is NoDefault:
                raise TypeError(f"__init__ missing 1 required argument: '{key}'")


@dataclass
class Parent(NoDefaultAttributesPostInitMixin):
    a: str = ""

@dataclass
class Child(Foo):
    b: NoDefaultVar[str] = no_default

如果你使用的是Python 3.10+,那么你可以在这个答案和Python文档中讨论的数据类中使用仅关键字参数。

如果你使用的是< Python 3.10,那么你可以利用数据类。字段,使用default_factory抛出。由于该属性将使用field()声明,因此它被视为具有默认值;但是,如果用户试图创建一个实例而没有提供该字段的值,它将使用工厂,这将会出错。

这种技术并不等同于仅使用关键字,因为您仍然可以按位置提供所有参数。但是,这确实解决了问题,而且比使用各种数据类dunder方法要简单得多。

from dataclasses import dataclass, field
from datetime import datetime
from typing import Optional, TypeVar

T = TypeVar("T")


def required() -> T:
    f: T

    def factory() -> T:
        # mypy treats a Field as a T, even though it has attributes like .name, .default, etc
        field_name = f.name  # type: ignore[attr-defined]
        raise ValueError(f"field '{field_name}' required")

    f = field(default_factory=factory)
    return f


@dataclass
class Event:
    id: str
    created_at: datetime
    updated_at: Optional[datetime] = None


@dataclass
class NamedEvent(Event):
    name: str = required()


event = NamedEvent(name="Some Event", id="ab13c1a", created_at=datetime.now())
print("created event:", event)


event2 = NamedEvent("ab13c1a", datetime.now(), name="Some Other Event")
print("created event:", event2)

event3 = NamedEvent("ab13c1a", datetime.now())

输出:

created event: NamedEvent(id='ab13c1a', created_at=datetime.datetime(2022, 7, 23, 19, 22, 17, 944550), updated_at=None, name='Some Event')
created event: NamedEvent(id='ab13c1a', created_at=datetime.datetime(2022, 7, 23, 19, 22, 17, 944588), updated_at=None, name='Some Other Event')
Traceback (most recent call last):
  File ".../gist.py", line 39, in <module>
    event3 = NamedEvent("ab13c1a", datetime.now())
  File "<string>", line 6, in __init__
  File ".../gist.py", line 14, in factory
    raise ValueError(f"field '{field_name}' required")
ValueError: field 'name' required

你也可以在github上找到这段代码。

你可以使用数据类的修改版本,它将生成一个只包含关键字的__init__方法:

import dataclasses


def _init_fn(fields, frozen, has_post_init, self_name):
    # fields contains both real fields and InitVar pseudo-fields.
    globals = {'MISSING': dataclasses.MISSING,
               '_HAS_DEFAULT_FACTORY': dataclasses._HAS_DEFAULT_FACTORY}

    body_lines = []
    for f in fields:
        line = dataclasses._field_init(f, frozen, globals, self_name)
        # line is None means that this field doesn't require
        # initialization (it's a pseudo-field).  Just skip it.
        if line:
            body_lines.append(line)

    # Does this class have a post-init function?
    if has_post_init:
        params_str = ','.join(f.name for f in fields
                              if f._field_type is dataclasses._FIELD_INITVAR)
        body_lines.append(f'{self_name}.{dataclasses._POST_INIT_NAME}({params_str})')

    # If no body lines, use 'pass'.
    if not body_lines:
        body_lines = ['pass']

    locals = {f'_type_{f.name}': f.type for f in fields}
    return dataclasses._create_fn('__init__',
                      [self_name, '*'] + [dataclasses._init_param(f) for f in fields if f.init],
                      body_lines,
                      locals=locals,
                      globals=globals,
                      return_type=None)


def add_init(cls, frozen):
    fields = getattr(cls, dataclasses._FIELDS)

    # Does this class have a post-init function?
    has_post_init = hasattr(cls, dataclasses._POST_INIT_NAME)

    # Include InitVars and regular fields (so, not ClassVars).
    flds = [f for f in fields.values()
            if f._field_type in (dataclasses._FIELD, dataclasses._FIELD_INITVAR)]
    dataclasses._set_new_attribute(cls, '__init__',
                       _init_fn(flds,
                                frozen,
                                has_post_init,
                                # The name to use for the "self"
                                # param in __init__.  Use "self"
                                # if possible.
                                '__dataclass_self__' if 'self' in fields
                                else 'self',
                                ))

    return cls


# a dataclass with a constructor that only takes keyword arguments
def dataclass_keyword_only(_cls=None, *, repr=True, eq=True, order=False,
              unsafe_hash=False, frozen=False):
    def wrap(cls):
        cls = dataclasses.dataclass(
            cls, init=False, repr=repr, eq=eq, order=order, unsafe_hash=unsafe_hash, frozen=frozen)
        return add_init(cls, frozen)

    # See if we're being called as @dataclass or @dataclass().
    if _cls is None:
        # We're called with parens.
        return wrap

    # We're called as @dataclass without parens.
    return wrap(_cls)

(也作为要点发布,用Python 3.6 backport测试)

这需要将子类定义为

@dataclass_keyword_only
class Child(Parent):
    school: str
    ugly: bool = True

并且会生成__init__(self, *, name:str, age:int, ugly:bool=True, school:str)(这是有效的python)。这里唯一的警告是不允许使用位置参数初始化对象,但除此之外,它是一个完全常规的数据类,没有丑陋的hack。

如何像这样定义丑陋的字段,而不是默认的方式?

ugly: bool = field(metadata=dict(required=False, missing=False))