我目前正在尝试Python 3.7中引入的新数据类结构。我目前被困在试图做一些继承的父类。看起来参数的顺序被我当前的方法搞砸了,比如子类中的bool形参在其他形参之前传递。这将导致一个类型错误。

from dataclasses import dataclass

@dataclass
class Parent:
    name: str
    age: int
    ugly: bool = False

    def print_name(self):
        print(self.name)

    def print_age(self):
        print(self.age)

    def print_id(self):
        print(f'The Name is {self.name} and {self.name} is {self.age} year old')

@dataclass
class Child(Parent):
    school: str
    ugly: bool = True


jack = Parent('jack snr', 32, ugly=True)
jack_son = Child('jack jnr', 12, school = 'havard', ugly=True)

jack.print_id()
jack_son.print_id()

当我运行这段代码时,我得到这个TypeError:

TypeError: non-default argument 'school' follows default argument

我怎么解决这个问题?


当前回答

补充使用attrs的Martijn Pieters解决方案:可以在没有默认属性复制的情况下创建继承,使用:

import attr

@attr.s(auto_attribs=True)
class Parent:
    name: str
    age: int
    ugly: bool = attr.ib(default=False, kw_only=True)


@attr.s(auto_attribs=True)
class Child(Parent):
    school: str
    ugly: bool = True

关于kw_only参数的更多信息可以在这里找到

其他回答

数据类组合属性的方式阻止您在基类中使用带有默认值的属性,然后在子类中使用没有默认值的属性(位置属性)。

That's because the attributes are combined by starting from the bottom of the MRO, and building up an ordered list of the attributes in first-seen order; overrides are kept in their original location. So Parent starts out with ['name', 'age', 'ugly'], where ugly has a default, and then Child adds ['school'] to the end of that list (with ugly already in the list). This means you end up with ['name', 'age', 'ugly', 'school'] and because school doesn't have a default, this results in an invalid argument listing for __init__.

这被记录在PEP-557数据类中,在继承下:

When the Data Class is being created by the @dataclass decorator, it looks through all of the class's base classes in reverse MRO (that is, starting at object) and, for each Data Class that it finds, adds the fields from that base class to an ordered mapping of fields. After all of the base class fields are added, it adds its own fields to the ordered mapping. All of the generated methods will use this combined, calculated ordered mapping of fields. Because the fields are in insertion order, derived classes override base classes.

规格项下:

如果一个没有默认值的字段紧跟在一个有默认值的字段之后,将引发TypeError。无论是在单个类中发生这种情况,还是作为类继承的结果,都是如此。

您确实有一些选择来避免这个问题。

第一个选项是使用单独的基类,将具有默认值的字段强制放到MRO顺序的后面位置。无论如何,避免直接在要用作基类的类上设置字段,例如Parent。

下面的类层次结构可以工作:

# base classes with fields; fields without defaults separate from fields with.
@dataclass
class _ParentBase:
    name: str
    age: int
    
@dataclass
class _ParentDefaultsBase:
    ugly: bool = False

@dataclass
class _ChildBase(_ParentBase):
    school: str

@dataclass
class _ChildDefaultsBase(_ParentDefaultsBase):
    ugly: bool = True

# public classes, deriving from base-with, base-without field classes
# subclasses of public classes should put the public base class up front.

@dataclass
class Parent(_ParentDefaultsBase, _ParentBase):
    def print_name(self):
        print(self.name)

    def print_age(self):
        print(self.age)

    def print_id(self):
        print(f"The Name is {self.name} and {self.name} is {self.age} year old")

@dataclass
class Child(_ChildDefaultsBase, Parent, _ChildBase):
    pass

通过将字段提取到具有无默认字段和具有默认字段的独立基类中,并仔细选择继承顺序,您可以生成一个MRO,将所有无默认字段放在具有默认字段之前。Child的反向MRO(忽略对象)是:

_ParentBase
_ChildBase
_ParentDefaultsBase
Parent
_ChildDefaultsBase

注意,虽然Parent没有设置任何新字段,但它确实从_ParentDefaultsBase继承了字段,并且不应该在字段列表顺序中以“最后”结束;上面的顺序把_ChildDefaultsBase放在最后,所以它的字段“win”。数据类规则也得到了满足;带默认字段的类(_ParentBase和_ChildBase)位于带默认字段的类(_ParentDefaultsBase和_ChildDefaultsBase)前面。

结果是父类和子类的字段都是旧的,而Child仍然是Parent的子类:

>>> from inspect import signature
>>> signature(Parent)
<Signature (name: str, age: int, ugly: bool = False) -> None>
>>> signature(Child)
<Signature (name: str, age: int, school: str, ugly: bool = True) -> None>
>>> issubclass(Child, Parent)
True

所以你可以创建这两个类的实例:

>>> jack = Parent('jack snr', 32, ugly=True)
>>> jack_son = Child('jack jnr', 12, school='havard', ugly=True)
>>> jack
Parent(name='jack snr', age=32, ugly=True)
>>> jack_son
Child(name='jack jnr', age=12, school='havard', ugly=True)

另一种选择是只使用默认字段;你仍然可以通过在__post_init__中引发一个错误来不提供学校值:

_no_default = object()

@dataclass
class Child(Parent):
    school: str = _no_default
    ugly: bool = True

    def __post_init__(self):
        if self.school is _no_default:
            raise TypeError("__init__ missing 1 required argument: 'school'")

但这确实改变了场的顺序;学校结束后丑陋:

<Signature (name: str, age: int, ugly: bool = True, school: str = <object object at 0x1101d1210>) -> None>

类型提示检查器会提示_no_default不是字符串。

您还可以使用attrs项目,该项目激发了数据类的灵感。它使用了不同的继承合并策略;它将子类中被覆盖的字段拉到字段列表的末尾,因此父类中的['name', 'age', 'ugly']在子类中变成了['name', 'age', 'school', 'ugly'];通过使用默认值重写字段,attrs允许重写而不需要执行MRO舞蹈。

attrs支持定义没有类型提示的字段,但是让我们通过设置auto_attribs=True坚持支持的类型提示模式:

import attr

@attr.s(auto_attribs=True)
class Parent:
    name: str
    age: int
    ugly: bool = False

    def print_name(self):
        print(self.name)

    def print_age(self):
        print(self.age)

    def print_id(self):
        print(f"The Name is {self.name} and {self.name} is {self.age} year old")

@attr.s(auto_attribs=True)
class Child(Parent):
    school: str
    ugly: bool = True

您看到此错误是因为在具有默认值的实参之后添加了没有默认值的实参。继承字段到数据类中的插入顺序与方法解析顺序相反,这意味着父字段放在前面,即使它们稍后被它们的子字段覆盖。

来自PEP-557 -数据类的示例:

@dataclass 阶级基础: x: Any = 15.0 Y: int = 0 @dataclass C类(基础): Z: int = 10 X: int = 15 最终的字段列表是,按顺序,x, y, z。x的最终类型是int,在类C中指定。

不幸的是,我认为没有其他办法。我的理解是,如果父类有默认实参,那么子类就不能有非默认实参。

请注意,在Python 3.10中,现在可以使用数据类原生地进行此操作。

Dataclasses 3.10添加了kw_only属性(类似于attrs)。 它允许您指定哪些字段是keyword_only,因此将在init结束时设置,而不会导致继承问题。

直接从埃里克·史密斯关于这个主题的博客文章中摘录:

人们要求这个功能的原因有两个: 当一个数据类有很多字段时,通过位置指定它们可能变得不可读。为了向后兼容,它还要求将所有新字段添加到数据类的末尾。这并不总是可取的。 当一个数据类从另一个数据类继承,并且基类的字段具有默认值时,派生类中的所有字段也必须具有默认值。

下面是使用这个new参数的最简单的方法,但是有多种方法可以使用它来继承父类中的默认值:

from dataclasses import dataclass

@dataclass(kw_only=True)
class Parent:
    name: str
    age: int
    ugly: bool = False

@dataclass(kw_only=True)
class Child(Parent):
    school: str

ch = Child(name="Kevin", age=17, school="42")
print(ch.ugly)

看一下上面链接的博客文章,可以更彻底地解释kw_only。

干杯!

PS:由于它是相当新的,请注意您的IDE仍然可能会引发一个错误,但它在运行时工作

下面的方法在使用纯python数据类和没有太多样板代码的情况下处理这个问题。

丑陋的:数据类。InitVar[bool]只是作为一个伪字段来帮助我们进行初始化,一旦创建实例就会丢失。而_ugly: bool = field(init=False)是一个实例成员,它不会通过__init__方法初始化,但也可以使用__post_init__方法初始化(你可以在这里找到更多)。

from dataclasses import dataclass, field, InitVar

@dataclass
class Parent:
    name: str
    age: int
    ugly: InitVar[bool]
    _ugly: bool = field(init=False)

    def __post_init__(self, ugly: bool):
        self._ugly = ugly

    def print_name(self):
        print(self.name)

    def print_age(self):
        print(self.age)

    def print_id(self):
        print(f'The Name is {self.name} and {self.name} is {self.age} year old')

@dataclass
class Child(Parent):
    school: str

jack = Parent('jack snr', 32, ugly=True)
jack_son = Child('jack jnr', 12, school='havard', ugly=True)

jack.print_id()
jack_son.print_id()

注意,这使得字段ugly成为强制性的,使其成为可选的。你可以在父类上定义一个类方法,其中包含ugly作为可选参数:

from dataclasses import dataclass, field, InitVar

@dataclass
class Parent:
    name: str
    age: int
    ugly: InitVar[bool]
    _ugly: bool = field(init=False)

    def __post_init__(self, ugly: bool):
        self._ugly = ugly
    
    @classmethod
    def create(cls, ugly=True, **kwargs):
        return cls(ugly=ugly, **kwargs)

    def print_name(self):
        print(self.name)

    def print_age(self):
        print(self.age)

    def print_id(self):
        print(f'The Name is {self.name} and {self.name} is {self.age} year old')

@dataclass
class Child(Parent):
    school: str

jack = Parent.create(name='jack snr', age=32, ugly=False)
jack_son = Child.create(name='jack jnr', age=12, school='harvard')

jack.print_id()
jack_son.print_id()

现在您可以使用create(…)类方法作为创建父/子类的工厂方法,并使用默认值ugly。注意,这种方法必须使用命名参数才能工作。

如果你使用的是Python 3.10+,那么你可以在这个答案和Python文档中讨论的数据类中使用仅关键字参数。

如果你使用的是< Python 3.10,那么你可以利用数据类。字段,使用default_factory抛出。由于该属性将使用field()声明,因此它被视为具有默认值;但是,如果用户试图创建一个实例而没有提供该字段的值,它将使用工厂,这将会出错。

这种技术并不等同于仅使用关键字,因为您仍然可以按位置提供所有参数。但是,这确实解决了问题,而且比使用各种数据类dunder方法要简单得多。

from dataclasses import dataclass, field
from datetime import datetime
from typing import Optional, TypeVar

T = TypeVar("T")


def required() -> T:
    f: T

    def factory() -> T:
        # mypy treats a Field as a T, even though it has attributes like .name, .default, etc
        field_name = f.name  # type: ignore[attr-defined]
        raise ValueError(f"field '{field_name}' required")

    f = field(default_factory=factory)
    return f


@dataclass
class Event:
    id: str
    created_at: datetime
    updated_at: Optional[datetime] = None


@dataclass
class NamedEvent(Event):
    name: str = required()


event = NamedEvent(name="Some Event", id="ab13c1a", created_at=datetime.now())
print("created event:", event)


event2 = NamedEvent("ab13c1a", datetime.now(), name="Some Other Event")
print("created event:", event2)

event3 = NamedEvent("ab13c1a", datetime.now())

输出:

created event: NamedEvent(id='ab13c1a', created_at=datetime.datetime(2022, 7, 23, 19, 22, 17, 944550), updated_at=None, name='Some Event')
created event: NamedEvent(id='ab13c1a', created_at=datetime.datetime(2022, 7, 23, 19, 22, 17, 944588), updated_at=None, name='Some Other Event')
Traceback (most recent call last):
  File ".../gist.py", line 39, in <module>
    event3 = NamedEvent("ab13c1a", datetime.now())
  File "<string>", line 6, in __init__
  File ".../gist.py", line 14, in factory
    raise ValueError(f"field '{field_name}' required")
ValueError: field 'name' required

你也可以在github上找到这段代码。