我有一个JSON文件,我想转换为CSV文件。我如何用Python做到这一点?

我试着:

import json
import csv

f = open('data.json')
data = json.load(f)
f.close()

f = open('data.csv')
csv_file = csv.writer(f)
for item in data:
    csv_file.writerow(item)

f.close()

然而,这并没有起作用。我正在使用Django和我收到的错误是:

`file' object has no attribute 'writerow'`

然后我尝试了以下方法:

import json
import csv

f = open('data.json')
data = json.load(f)
f.close()

f = open('data.csv')
csv_file = csv.writer(f)
for item in data:
    f.writerow(item)  # ← changed

f.close()

然后得到错误:

`sequence expected`

样本json文件:

[{
        "pk": 22,
        "model": "auth.permission",
        "fields": {
            "codename": "add_logentry",
            "name": "Can add log entry",
            "content_type": 8
        }
    }, {
        "pk": 23,
        "model": "auth.permission",
        "fields": {
            "codename": "change_logentry",
            "name": "Can change log entry",
            "content_type": 8
        }
    }, {
        "pk": 24,
        "model": "auth.permission",
        "fields": {
            "codename": "delete_logentry",
            "name": "Can delete log entry",
            "content_type": 8
        }
    }, {
        "pk": 4,
        "model": "auth.permission",
        "fields": {
            "codename": "add_group",
            "name": "Can add group",
            "content_type": 2
        }
    }, {
        "pk": 10,
        "model": "auth.permission",
        "fields": {
            "codename": "add_message",
            "name": "Can add message",
            "content_type": 4
        }
    }
]

当前回答

使用pandas中的json_normalize:

在名为test.json的文件中使用来自OP的示例数据。 这里使用了Encoding ='utf-8',但在其他情况下可能不需要。 下面的代码利用了pathlib库。 .open是pathlib的一个方法。 也适用于非windows路径。 使用pandas.to_csv(…)将数据保存为csv文件。

import pandas as pd
# As of Pandas 1.01, json_normalize as pandas.io.json.json_normalize is deprecated and is now exposed in the top-level namespace.
# from pandas.io.json import json_normalize
from pathlib import Path
import json

# set path to file
p = Path(r'c:\some_path_to_file\test.json')

# read json
with p.open('r', encoding='utf-8') as f:
    data = json.loads(f.read())

# create dataframe
df = pd.json_normalize(data)

# dataframe view
 pk            model  fields.codename           fields.name  fields.content_type
 22  auth.permission     add_logentry     Can add log entry                    8
 23  auth.permission  change_logentry  Can change log entry                    8
 24  auth.permission  delete_logentry  Can delete log entry                    8
  4  auth.permission        add_group         Can add group                    2
 10  auth.permission      add_message       Can add message                    4

# save to csv
df.to_csv('test.csv', index=False, encoding='utf-8')

CSV输出:

pk,model,fields.codename,fields.name,fields.content_type
22,auth.permission,add_logentry,Can add log entry,8
23,auth.permission,change_logentry,Can change log entry,8
24,auth.permission,delete_logentry,Can delete log entry,8
4,auth.permission,add_group,Can add group,2
10,auth.permission,add_message,Can add message,4

嵌套更重的JSON对象的资源:

所以答案: 用python平化JSON数组 如何平嵌套的JSON递归,与平坦JSON 如何json_normalize一个列与nan 使用pandas将一列字典拆分为单独的列 有关其他相关问题,请参阅json_normalize标记。

其他回答

一个通用的解决方案,将任何json列表的平面对象转换为csv。

传递输入。Json文件作为命令行的第一个参数。

import csv, json, sys

input = open(sys.argv[1])
data = json.load(input)
input.close()

output = csv.writer(sys.stdout)

output.writerow(data[0].keys())  # header row

for row in data:
    output.writerow(row.values())

您可以使用此代码将json文件转换为csv文件 读取文件后,我将对象转换为熊猫数据框架,然后将其保存为CSV文件

import os
import pandas as pd
import json
import numpy as np

data = []
os.chdir('D:\\Your_directory\\folder')
with open('file_name.json', encoding="utf8") as data_file:    
     for line in data_file:
        data.append(json.loads(line))

dataframe = pd.DataFrame(data)        
## Saving the dataframe to a csv file
dataframe.to_csv("filename.csv", encoding='utf-8',index= False)

这段代码应该适用于您,假设您的JSON数据在一个名为data. JSON的文件中。

import json
import csv

with open("data.json") as file:
    data = json.load(file)

with open("data.csv", "w") as file:
    csv_file = csv.writer(file)
    for item in data:
        fields = list(item['fields'].values())
        csv_file.writerow([item['pk'], item['model']] + fields)

正如在前面的回答中提到的,将json转换为csv的困难在于json文件可以包含嵌套字典,因此是多维数据结构,而csv是2D数据结构。但是,将多维结构转换为csv的一个好方法是使用多个主键连接在一起的csv。

在你的例子中,第一个csv输出的列是“pk”,“model”,“fields”。“pk”和“model”的值很容易获得,但因为“fields”列包含一个字典,它应该是它自己的csv,因为“codename”似乎是主键,你可以使用作为“fields”的输入来完成第一个csv。第二个csv包含来自“fields”列的字典,以codename作为主键,可用于将两个csv绑定在一起。

这是一个解决方案,为您的json文件转换嵌套字典2 csv。

import csv
import json

def readAndWrite(inputFileName, primaryKey=""):
    input = open(inputFileName+".json")
    data = json.load(input)
    input.close()

    header = set()

    if primaryKey != "":
        outputFileName = inputFileName+"-"+primaryKey
        if inputFileName == "data":
            for i in data:
                for j in i["fields"].keys():
                    if j not in header:
                        header.add(j)
    else:
        outputFileName = inputFileName
        for i in data:
            for j in i.keys():
                if j not in header:
                    header.add(j)

    with open(outputFileName+".csv", 'wb') as output_file:
        fieldnames = list(header)
        writer = csv.DictWriter(output_file, fieldnames, delimiter=',', quotechar='"')
        writer.writeheader()
        for x in data:
            row_value = {}
            if primaryKey == "":
                for y in x.keys():
                    yValue = x.get(y)
                    if type(yValue) == int or type(yValue) == bool or type(yValue) == float or type(yValue) == list:
                        row_value[y] = str(yValue).encode('utf8')
                    elif type(yValue) != dict:
                        row_value[y] = yValue.encode('utf8')
                    else:
                        if inputFileName == "data":
                            row_value[y] = yValue["codename"].encode('utf8')
                            readAndWrite(inputFileName, primaryKey="codename")
                writer.writerow(row_value)
            elif primaryKey == "codename":
                for y in x["fields"].keys():
                    yValue = x["fields"].get(y)
                    if type(yValue) == int or type(yValue) == bool or type(yValue) == float or type(yValue) == list:
                        row_value[y] = str(yValue).encode('utf8')
                    elif type(yValue) != dict:
                        row_value[y] = yValue.encode('utf8')
                writer.writerow(row_value)

readAndWrite("data")

这工作得相对较好。 它将json压缩成csv文件。 嵌套元素被管理:)

这是python 3的

import json

o = json.loads('your json string') # Be careful, o must be a list, each of its objects will make a line of the csv.

def flatten(o, k='/'):
    global l, c_line
    if isinstance(o, dict):
        for key, value in o.items():
            flatten(value, k + '/' + key)
    elif isinstance(o, list):
        for ov in o:
            flatten(ov, '')
    elif isinstance(o, str):
        o = o.replace('\r',' ').replace('\n',' ').replace(';', ',')
        if not k in l:
            l[k]={}
        l[k][c_line]=o

def render_csv(l):
    ftime = True

    for i in range(100): #len(l[list(l.keys())[0]])
        for k in l:
            if ftime :
                print('%s;' % k, end='')
                continue
            v = l[k]
            try:
                print('%s;' % v[i], end='')
            except:
                print(';', end='')
        print()
        ftime = False
        i = 0

def json_to_csv(object_list):
    global l, c_line
    l = {}
    c_line = 0
    for ov in object_list : # Assumes json is a list of objects
        flatten(ov)
        c_line += 1
    render_csv(l)

json_to_csv(o)

享受。