我有一个JSON文件,我想转换为CSV文件。我如何用Python做到这一点?

我试着:

import json
import csv

f = open('data.json')
data = json.load(f)
f.close()

f = open('data.csv')
csv_file = csv.writer(f)
for item in data:
    csv_file.writerow(item)

f.close()

然而,这并没有起作用。我正在使用Django和我收到的错误是:

`file' object has no attribute 'writerow'`

然后我尝试了以下方法:

import json
import csv

f = open('data.json')
data = json.load(f)
f.close()

f = open('data.csv')
csv_file = csv.writer(f)
for item in data:
    f.writerow(item)  # ← changed

f.close()

然后得到错误:

`sequence expected`

样本json文件:

[{
        "pk": 22,
        "model": "auth.permission",
        "fields": {
            "codename": "add_logentry",
            "name": "Can add log entry",
            "content_type": 8
        }
    }, {
        "pk": 23,
        "model": "auth.permission",
        "fields": {
            "codename": "change_logentry",
            "name": "Can change log entry",
            "content_type": 8
        }
    }, {
        "pk": 24,
        "model": "auth.permission",
        "fields": {
            "codename": "delete_logentry",
            "name": "Can delete log entry",
            "content_type": 8
        }
    }, {
        "pk": 4,
        "model": "auth.permission",
        "fields": {
            "codename": "add_group",
            "name": "Can add group",
            "content_type": 2
        }
    }, {
        "pk": 10,
        "model": "auth.permission",
        "fields": {
            "codename": "add_message",
            "name": "Can add message",
            "content_type": 4
        }
    }
]

当前回答

解决这个问题的简单方法是:

创建一个新的Python文件,如:json_to_csv.py

添加以下代码:

import csv, json, sys
#if you are not using utf-8 files, remove the next line
sys.setdefaultencoding("UTF-8")
#check if you pass the input file and output file
if sys.argv[1] is not None and sys.argv[2] is not None:

    fileInput = sys.argv[1]
    fileOutput = sys.argv[2]

    inputFile = open(fileInput)
    outputFile = open(fileOutput, 'w')
    data = json.load(inputFile)
    inputFile.close()

    output = csv.writer(outputFile)

    output.writerow(data[0].keys())  # header row

    for row in data:
        output.writerow(row.values())

添加代码后,保存文件并在终端上运行:

Python json_to_csv.py input.txt output.csv

我希望这对你有帮助。

韩国歌手组合!

其他回答

我已经尝试了很多建议的解决方案(也熊猫没有正确地规范化我的JSON),但真正好的是正确解析JSON数据来自Max Berman。

我写了一个改进,以避免每一行都有新列 在解析期间将其放置到现有列。 如果只有一个数据存在,则将值存储为字符串,如果该列有更多值,则将值存储为列表。

它有一个输入。Json文件作为输入,并输出一个output.csv。

import json
import pandas as pd

def flatten_json(json):
    def process_value(keys, value, flattened):
        if isinstance(value, dict):
            for key in value.keys():
                process_value(keys + [key], value[key], flattened)
        elif isinstance(value, list):
            for idx, v in enumerate(value):
                process_value(keys, v, flattened)
                # process_value(keys + [str(idx)], v, flattened)
        else:
            key1 = '__'.join(keys)
            if not flattened.get(key1) is None:
                if isinstance(flattened[key1], list):
                    flattened[key1] = flattened[key1] + [value]
                else:
                    flattened[key1] = [flattened[key1]] + [value]
            else:
                flattened[key1] = value

    flattened = {}
    for key in json.keys():
        k = key
        # print("Key: " + k)
        process_value([key], json[key], flattened)
    return flattened

try:
    f = open("input.json", "r")
except:
    pass
y = json.loads(f.read())
flat = flatten_json(y)
text = json.dumps(flat)
df = pd.read_json(text)
df.to_csv('output.csv', index=False, encoding='utf-8')

您可以使用此代码将json文件转换为csv文件 读取文件后,我将对象转换为熊猫数据框架,然后将其保存为CSV文件

import os
import pandas as pd
import json
import numpy as np

data = []
os.chdir('D:\\Your_directory\\folder')
with open('file_name.json', encoding="utf8") as data_file:    
     for line in data_file:
        data.append(json.loads(line))

dataframe = pd.DataFrame(data)        
## Saving the dataframe to a csv file
dataframe.to_csv("filename.csv", encoding='utf-8',index= False)

这工作得相对较好。 它将json压缩成csv文件。 嵌套元素被管理:)

这是python 3的

import json

o = json.loads('your json string') # Be careful, o must be a list, each of its objects will make a line of the csv.

def flatten(o, k='/'):
    global l, c_line
    if isinstance(o, dict):
        for key, value in o.items():
            flatten(value, k + '/' + key)
    elif isinstance(o, list):
        for ov in o:
            flatten(ov, '')
    elif isinstance(o, str):
        o = o.replace('\r',' ').replace('\n',' ').replace(';', ',')
        if not k in l:
            l[k]={}
        l[k][c_line]=o

def render_csv(l):
    ftime = True

    for i in range(100): #len(l[list(l.keys())[0]])
        for k in l:
            if ftime :
                print('%s;' % k, end='')
                continue
            v = l[k]
            try:
                print('%s;' % v[i], end='')
            except:
                print(';', end='')
        print()
        ftime = False
        i = 0

def json_to_csv(object_list):
    global l, c_line
    l = {}
    c_line = 0
    for ov in object_list : # Assumes json is a list of objects
        flatten(ov)
        c_line += 1
    render_csv(l)

json_to_csv(o)

享受。

使用pandas中的json_normalize:

在名为test.json的文件中使用来自OP的示例数据。 这里使用了Encoding ='utf-8',但在其他情况下可能不需要。 下面的代码利用了pathlib库。 .open是pathlib的一个方法。 也适用于非windows路径。 使用pandas.to_csv(…)将数据保存为csv文件。

import pandas as pd
# As of Pandas 1.01, json_normalize as pandas.io.json.json_normalize is deprecated and is now exposed in the top-level namespace.
# from pandas.io.json import json_normalize
from pathlib import Path
import json

# set path to file
p = Path(r'c:\some_path_to_file\test.json')

# read json
with p.open('r', encoding='utf-8') as f:
    data = json.loads(f.read())

# create dataframe
df = pd.json_normalize(data)

# dataframe view
 pk            model  fields.codename           fields.name  fields.content_type
 22  auth.permission     add_logentry     Can add log entry                    8
 23  auth.permission  change_logentry  Can change log entry                    8
 24  auth.permission  delete_logentry  Can delete log entry                    8
  4  auth.permission        add_group         Can add group                    2
 10  auth.permission      add_message       Can add message                    4

# save to csv
df.to_csv('test.csv', index=False, encoding='utf-8')

CSV输出:

pk,model,fields.codename,fields.name,fields.content_type
22,auth.permission,add_logentry,Can add log entry,8
23,auth.permission,change_logentry,Can change log entry,8
24,auth.permission,delete_logentry,Can delete log entry,8
4,auth.permission,add_group,Can add group,2
10,auth.permission,add_message,Can add message,4

嵌套更重的JSON对象的资源:

所以答案: 用python平化JSON数组 如何平嵌套的JSON递归,与平坦JSON 如何json_normalize一个列与nan 使用pandas将一列字典拆分为单独的列 有关其他相关问题,请参阅json_normalize标记。

这不是一个很聪明的方法,但我也遇到过同样的问题,这对我来说很有效:

import csv

f = open('data.json')
data = json.load(f)
f.close()

new_data = []

for i in data:
   flat = {}
   names = i.keys()
   for n in names:
      try:
         if len(i[n].keys()) > 0:
            for ii in i[n].keys():
               flat[n+"_"+ii] = i[n][ii]
      except:
         flat[n] = i[n]
   new_data.append(flat)  

f = open(filename, "r")
writer = csv.DictWriter(f, new_data[0].keys())
writer.writeheader()
for row in new_data:
   writer.writerow(row)
f.close()