我有一个JSON文件,我想转换为CSV文件。我如何用Python做到这一点?

我试着:

import json
import csv

f = open('data.json')
data = json.load(f)
f.close()

f = open('data.csv')
csv_file = csv.writer(f)
for item in data:
    csv_file.writerow(item)

f.close()

然而,这并没有起作用。我正在使用Django和我收到的错误是:

`file' object has no attribute 'writerow'`

然后我尝试了以下方法:

import json
import csv

f = open('data.json')
data = json.load(f)
f.close()

f = open('data.csv')
csv_file = csv.writer(f)
for item in data:
    f.writerow(item)  # ← changed

f.close()

然后得到错误:

`sequence expected`

样本json文件:

[{
        "pk": 22,
        "model": "auth.permission",
        "fields": {
            "codename": "add_logentry",
            "name": "Can add log entry",
            "content_type": 8
        }
    }, {
        "pk": 23,
        "model": "auth.permission",
        "fields": {
            "codename": "change_logentry",
            "name": "Can change log entry",
            "content_type": 8
        }
    }, {
        "pk": 24,
        "model": "auth.permission",
        "fields": {
            "codename": "delete_logentry",
            "name": "Can delete log entry",
            "content_type": 8
        }
    }, {
        "pk": 4,
        "model": "auth.permission",
        "fields": {
            "codename": "add_group",
            "name": "Can add group",
            "content_type": 2
        }
    }, {
        "pk": 10,
        "model": "auth.permission",
        "fields": {
            "codename": "add_message",
            "name": "Can add message",
            "content_type": 4
        }
    }
]

当前回答

这是@MikeRepass回答的修改。此版本将CSV写入文件,适用于Python 2和Python 3。

import csv,json
input_file="data.json"
output_file="data.csv"
with open(input_file) as f:
    content=json.load(f)
try:
    context=open(output_file,'w',newline='') # Python 3
except TypeError:
    context=open(output_file,'wb') # Python 2
with context as file:
    writer=csv.writer(file)
    writer.writerow(content[0].keys()) # header row
    for row in content:
        writer.writerow(row.values())

其他回答

令人惊讶的是,我发现到目前为止贴在这里的答案都没有正确处理所有可能的场景(例如,嵌套字典,嵌套列表,无值等)。

这个解决方案应该适用于所有场景:

def flatten_json(json):
    def process_value(keys, value, flattened):
        if isinstance(value, dict):
            for key in value.keys():
                process_value(keys + [key], value[key], flattened)
        elif isinstance(value, list):
            for idx, v in enumerate(value):
                process_value(keys + [str(idx)], v, flattened)
        else:
            flattened['__'.join(keys)] = value

    flattened = {}
    for key in json.keys():
        process_value([key], json[key], flattened)
    return flattened

我假设您的JSON文件将解码为字典列表。首先,我们需要一个将JSON对象扁平化的函数:

def flattenjson(b, delim):
    val = {}
    for i in b.keys():
        if isinstance(b[i], dict):
            get = flattenjson(b[i], delim)
            for j in get.keys():
                val[i + delim + j] = get[j]
        else:
            val[i] = b[i]
            
    return val

在JSON对象上运行这段代码的结果:

flattenjson({
    "pk": 22, 
    "model": "auth.permission", 
    "fields": {
      "codename": "add_message", 
      "name": "Can add message", 
      "content_type": 8
    }
  }, "__")

is

{
    "pk": 22, 
    "model": "auth.permission", 
    "fields__codename": "add_message", 
    "fields__name": "Can add message", 
    "fields__content_type": 8
}

对JSON对象输入数组中的每个dict应用此函数后:

input = map(lambda x: flattenjson( x, "__" ), input)

并查找相关的列名:

columns = [x for row in input for x in row.keys()]
columns = list(set(columns))

在CSV模块中运行这个并不难:

with open(fname, 'wb') as out_file:
    csv_w = csv.writer(out_file)
    csv_w.writerow(columns)

    for i_r in input:
        csv_w.writerow(map(lambda x: i_r.get(x, ""), columns))

我可能迟到了,但我想,我已经处理过类似的问题。我有一个json文件,看起来像这样

我只想从这些json文件中提取一些键/值。因此,我编写了下面的代码来提取相同的内容。

    """json_to_csv.py
    This script reads n numbers of json files present in a folder and then extract certain data from each file and write in a csv file.
    The folder contains the python script i.e. json_to_csv.py, output.csv and another folder descriptions containing all the json files.
"""

import os
import json
import csv


def get_list_of_json_files():
    """Returns the list of filenames of all the Json files present in the folder
    Parameter
    ---------
    directory : str
        'descriptions' in this case
    Returns
    -------
    list_of_files: list
        List of the filenames of all the json files
    """

    list_of_files = os.listdir('descriptions')  # creates list of all the files in the folder

    return list_of_files


def create_list_from_json(jsonfile):
    """Returns a list of the extracted items from json file in the same order we need it.
    Parameter
    _________
    jsonfile : json
        The json file containing the data
    Returns
    -------
    one_sample_list : list
        The list of the extracted items needed for the final csv
    """

    with open(jsonfile) as f:
        data = json.load(f)

    data_list = []  # create an empty list

    # append the items to the list in the same order.
    data_list.append(data['_id'])
    data_list.append(data['_modelType'])
    data_list.append(data['creator']['_id'])
    data_list.append(data['creator']['name'])
    data_list.append(data['dataset']['_accessLevel'])
    data_list.append(data['dataset']['_id'])
    data_list.append(data['dataset']['description'])
    data_list.append(data['dataset']['name'])
    data_list.append(data['meta']['acquisition']['image_type'])
    data_list.append(data['meta']['acquisition']['pixelsX'])
    data_list.append(data['meta']['acquisition']['pixelsY'])
    data_list.append(data['meta']['clinical']['age_approx'])
    data_list.append(data['meta']['clinical']['benign_malignant'])
    data_list.append(data['meta']['clinical']['diagnosis'])
    data_list.append(data['meta']['clinical']['diagnosis_confirm_type'])
    data_list.append(data['meta']['clinical']['melanocytic'])
    data_list.append(data['meta']['clinical']['sex'])
    data_list.append(data['meta']['unstructured']['diagnosis'])
    # In few json files, the race was not there so using KeyError exception to add '' at the place
    try:
        data_list.append(data['meta']['unstructured']['race'])
    except KeyError:
        data_list.append("")  # will add an empty string in case race is not there.
    data_list.append(data['name'])

    return data_list


def write_csv():
    """Creates the desired csv file
    Parameters
    __________
    list_of_files : file
        The list created by get_list_of_json_files() method
    result.csv : csv
        The csv file containing the header only
    Returns
    _______
    result.csv : csv
        The desired csv file
    """

    list_of_files = get_list_of_json_files()
    for file in list_of_files:
        row = create_list_from_json(f'descriptions/{file}')  # create the row to be added to csv for each file (json-file)
        with open('output.csv', 'a') as c:
            writer = csv.writer(c)
            writer.writerow(row)
        c.close()


if __name__ == '__main__':
    write_csv()

我希望这能有所帮助。有关此代码如何工作的详细信息,请查看这里

正如在前面的回答中提到的,将json转换为csv的困难在于json文件可以包含嵌套字典,因此是多维数据结构,而csv是2D数据结构。但是,将多维结构转换为csv的一个好方法是使用多个主键连接在一起的csv。

在你的例子中,第一个csv输出的列是“pk”,“model”,“fields”。“pk”和“model”的值很容易获得,但因为“fields”列包含一个字典,它应该是它自己的csv,因为“codename”似乎是主键,你可以使用作为“fields”的输入来完成第一个csv。第二个csv包含来自“fields”列的字典,以codename作为主键,可用于将两个csv绑定在一起。

这是一个解决方案,为您的json文件转换嵌套字典2 csv。

import csv
import json

def readAndWrite(inputFileName, primaryKey=""):
    input = open(inputFileName+".json")
    data = json.load(input)
    input.close()

    header = set()

    if primaryKey != "":
        outputFileName = inputFileName+"-"+primaryKey
        if inputFileName == "data":
            for i in data:
                for j in i["fields"].keys():
                    if j not in header:
                        header.add(j)
    else:
        outputFileName = inputFileName
        for i in data:
            for j in i.keys():
                if j not in header:
                    header.add(j)

    with open(outputFileName+".csv", 'wb') as output_file:
        fieldnames = list(header)
        writer = csv.DictWriter(output_file, fieldnames, delimiter=',', quotechar='"')
        writer.writeheader()
        for x in data:
            row_value = {}
            if primaryKey == "":
                for y in x.keys():
                    yValue = x.get(y)
                    if type(yValue) == int or type(yValue) == bool or type(yValue) == float or type(yValue) == list:
                        row_value[y] = str(yValue).encode('utf8')
                    elif type(yValue) != dict:
                        row_value[y] = yValue.encode('utf8')
                    else:
                        if inputFileName == "data":
                            row_value[y] = yValue["codename"].encode('utf8')
                            readAndWrite(inputFileName, primaryKey="codename")
                writer.writerow(row_value)
            elif primaryKey == "codename":
                for y in x["fields"].keys():
                    yValue = x["fields"].get(y)
                    if type(yValue) == int or type(yValue) == bool or type(yValue) == float or type(yValue) == list:
                        row_value[y] = str(yValue).encode('utf8')
                    elif type(yValue) != dict:
                        row_value[y] = yValue.encode('utf8')
                writer.writerow(row_value)

readAndWrite("data")

使用pandas中的json_normalize:

在名为test.json的文件中使用来自OP的示例数据。 这里使用了Encoding ='utf-8',但在其他情况下可能不需要。 下面的代码利用了pathlib库。 .open是pathlib的一个方法。 也适用于非windows路径。 使用pandas.to_csv(…)将数据保存为csv文件。

import pandas as pd
# As of Pandas 1.01, json_normalize as pandas.io.json.json_normalize is deprecated and is now exposed in the top-level namespace.
# from pandas.io.json import json_normalize
from pathlib import Path
import json

# set path to file
p = Path(r'c:\some_path_to_file\test.json')

# read json
with p.open('r', encoding='utf-8') as f:
    data = json.loads(f.read())

# create dataframe
df = pd.json_normalize(data)

# dataframe view
 pk            model  fields.codename           fields.name  fields.content_type
 22  auth.permission     add_logentry     Can add log entry                    8
 23  auth.permission  change_logentry  Can change log entry                    8
 24  auth.permission  delete_logentry  Can delete log entry                    8
  4  auth.permission        add_group         Can add group                    2
 10  auth.permission      add_message       Can add message                    4

# save to csv
df.to_csv('test.csv', index=False, encoding='utf-8')

CSV输出:

pk,model,fields.codename,fields.name,fields.content_type
22,auth.permission,add_logentry,Can add log entry,8
23,auth.permission,change_logentry,Can change log entry,8
24,auth.permission,delete_logentry,Can delete log entry,8
4,auth.permission,add_group,Can add group,2
10,auth.permission,add_message,Can add message,4

嵌套更重的JSON对象的资源:

所以答案: 用python平化JSON数组 如何平嵌套的JSON递归,与平坦JSON 如何json_normalize一个列与nan 使用pandas将一列字典拆分为单独的列 有关其他相关问题,请参阅json_normalize标记。