Python允许从给定基数的字符串中轻松创建一个整数

int(str, base). 

我想执行相反的操作:从一个整数创建一个字符串, 例如,我想要一些函数int2base(num, base),这样:

int(int2base(x, b), b) == x

函数名/参数的顺序并不重要。

对于int()将接受的任何以b为底的数字x。

这是一个很容易写的函数:事实上,它比在这个问题中描述它更容易。然而,我觉得我一定是错过了什么。

我知道函数bin, oct, hex,但我不能使用它们的几个原因:

这些函数在旧版本的Python中不可用,我需要与(2.2)兼容 我想要一个通解对于不同的碱都可以用同样的方式表示 我想允许2 8 16以外的底数

相关的

Python优雅的int(string, base)逆函数 在python中使用递归的整数到base-x系统 Python中的Base 62转换 如何在Python中将整数转换为最短的url安全字符串?


当前回答

这是一个老问题,但我想分享我的看法,因为我觉得它比其他答案更简单(适用于2到36进制):

def intStr(n,base=10):
    if n < 0   : return "-" + intStr(-n,base)         # handle negatives
    if n < base: return chr([48,55][n>9] + n)         # 48 => "0"..., 65 => "A"...
    return intStr(n//base,base) + intStr(n%base,base) # recurse for multiple digits

其他回答

num = input("number")
power = 0
num = int(num)
while num > 10:
    num = num / 10
    power += 1

print(str(round(num, 2)) + "^" + str(power))
def baseConverter(x, b):
    s = ""
    d = string.printable.upper()
    while x > 0:
        s += d[x%b]
        x = x / b
    return s[::-1]

如果你需要兼容Python的古老版本,你可以使用gmpy(它包含一个快速的,完全通用的int-to-string转换函数,可以为这样的古老版本构建-你可能需要尝试更老的版本,因为最近的版本还没有针对古老的Python和GMP版本进行测试,只有一些最近的版本),或者,为了速度较慢但更方便,使用Python代码-例如,对于Python 2,最简单的方法是:

import string
digs = string.digits + string.ascii_letters


def int2base(x, base):
    if x < 0:
        sign = -1
    elif x == 0:
        return digs[0]
    else:
        sign = 1

    x *= sign
    digits = []

    while x:
        digits.append(digs[int(x % base)])
        x = int(x / base)

    if sign < 0:
        digits.append('-')

    digits.reverse()

    return ''.join(digits)

对于Python 3, int(x / base)会导致不正确的结果,必须将其更改为x // base:

import string
digs = string.digits + string.ascii_letters


def int2base(x, base):
    if x < 0:
        sign = -1
    elif x == 0:
        return digs[0]
    else:
        sign = 1

    x *= sign
    digits = []

    while x:
        digits.append(digs[x % base])
        x = x // base

    if sign < 0:
        digits.append('-')

    digits.reverse()

    return ''.join(digits)
>>> import string
>>> def int2base(integer, base):
        if not integer: return '0'
        sign = 1 if integer > 0 else -1
        alphanum = string.digits + string.ascii_lowercase
        nums = alphanum[:base]
        res = ''
        integer *= sign
        while integer:
                integer, mod = divmod(integer, base)
                res += nums[mod]
        return ('' if sign == 1 else '-') + res[::-1]


>>> int2base(-15645, 23)
'-16d5'
>>> int2base(213, 21)
'a3'
def int2base(a, base, numerals="0123456789abcdefghijklmnopqrstuvwxyz"):
    baseit = lambda a=a, b=base: (not a) and numerals[0]  or baseit(a-a%b,b*base)+numerals[a%b%(base-1) or (a%b) and (base-1)]
    return baseit()

解释

在任何底数下,每个数字都等于a1+a2*base**2+a3*base**3…“任务”是找出所有的a。

everyN = 1、2、3……代码通过b对b=base**(N+1)进行“模组”来隔离aN*base**N, b=base**(N+1)切片所有大于N的a,并通过每次由当前aN*base**N调用func时减少a来切片它们的序列小于N的所有a。

底%(底-1)==1,则底**p%(底-1)==1,而底q*底^p%(底-1)==q,只有当q=底-1时例外,返回0。 为了解决这个问题,如果它返回0,func会检查它从原点开始是否是0。


优势

在这个例子中,只有一个乘法(而不是除法)和一些模量运算,这些运算相对花费的时间较少。