我正在寻找优先级队列或堆数据结构的.NET实现

Priority queues are data structures that provide more flexibility than simple sorting, because they allow new elements to enter a system at arbitrary intervals. It is much more cost-effective to insert a new job into a priority queue than to re-sort everything on each such arrival. The basic priority queue supports three primary operations: Insert(Q,x). Given an item x with key k, insert it into the priority queue Q. Find-Minimum(Q). Return a pointer to the item whose key value is smaller than any other key in the priority queue Q. Delete-Minimum(Q). Remove the item from the priority queue Q whose key is minimum

除非我找错地方了,否则框架里没有。有谁知道好的吗,还是我自己卷?


当前回答

class PriorityQueue<T>
{
    IComparer<T> comparer;
    T[] heap;
    public int Count { get; private set; }
    public PriorityQueue() : this(null) { }
    public PriorityQueue(int capacity) : this(capacity, null) { }
    public PriorityQueue(IComparer<T> comparer) : this(16, comparer) { }
    public PriorityQueue(int capacity, IComparer<T> comparer)
    {
        this.comparer = (comparer == null) ? Comparer<T>.Default : comparer;
        this.heap = new T[capacity];
    }
    public void push(T v)
    {
        if (Count >= heap.Length) Array.Resize(ref heap, Count * 2);
        heap[Count] = v;
        SiftUp(Count++);
    }
    public T pop()
    {
        var v = top();
        heap[0] = heap[--Count];
        if (Count > 0) SiftDown(0);
        return v;
    }
    public T top()
    {
        if (Count > 0) return heap[0];
        throw new InvalidOperationException("优先队列为空");
    }
    void SiftUp(int n)
    {
        var v = heap[n];
        for (var n2 = n / 2; n > 0 && comparer.Compare(v, heap[n2]) > 0; n = n2, n2 /= 2) heap[n] = heap[n2];
        heap[n] = v;
    }
    void SiftDown(int n)
    {
        var v = heap[n];
        for (var n2 = n * 2; n2 < Count; n = n2, n2 *= 2)
        {
            if (n2 + 1 < Count && comparer.Compare(heap[n2 + 1], heap[n2]) > 0) n2++;
            if (comparer.Compare(v, heap[n2]) >= 0) break;
            heap[n] = heap[n2];
        }
        heap[n] = v;
    }
}

一件容易的事。

其他回答

我喜欢使用PowerCollections中的OrderedBag和OrderedSet类作为优先队列。

这是我刚刚写的一个,也许它没有那么优化(只是使用了一个排序的字典),但很容易理解。 您可以插入不同类型的对象,因此没有泛型队列。

using System;
using System.Diagnostics;
using System.Collections;
using System.Collections.Generic;

namespace PrioQueue
{
    public class PrioQueue
    {
        int total_size;
        SortedDictionary<int, Queue> storage;

        public PrioQueue ()
        {
            this.storage = new SortedDictionary<int, Queue> ();
            this.total_size = 0;
        }

        public bool IsEmpty ()
        {
            return (total_size == 0);
        }

        public object Dequeue ()
        {
            if (IsEmpty ()) {
                throw new Exception ("Please check that priorityQueue is not empty before dequeing");
            } else
                foreach (Queue q in storage.Values) {
                    // we use a sorted dictionary
                    if (q.Count > 0) {
                        total_size--;
                        return q.Dequeue ();
                    }
                }

                Debug.Assert(false,"not supposed to reach here. problem with changing total_size");

                return null; // not supposed to reach here.
        }

        // same as above, except for peek.

        public object Peek ()
        {
            if (IsEmpty ())
                throw new Exception ("Please check that priorityQueue is not empty before peeking");
            else
                foreach (Queue q in storage.Values) {
                    if (q.Count > 0)
                        return q.Peek ();
                }

                Debug.Assert(false,"not supposed to reach here. problem with changing total_size");

                return null; // not supposed to reach here.
        }

        public object Dequeue (int prio)
        {
            total_size--;
            return storage[prio].Dequeue ();
        }

        public void Enqueue (object item, int prio)
        {
            if (!storage.ContainsKey (prio)) {
                storage.Add (prio, new Queue ());
              }
            storage[prio].Enqueue (item);
            total_size++;

        }
    }
}

在Java Collections框架中的Java实现(Java .util. priorityqueue)上使用Java到c#的转换器,或者更智能地使用算法和核心代码,并将其插入到您自己制作的c#类中,该类遵循c# Collections框架用于队列的API,或者至少是Collections。

我在Julian Bucknall的博客(http://www.boyet.com/Articles/PriorityQueueCSharp3.html)上找到了一个

我们稍微修改了一下,以便队列中优先级低的项目最终会随着时间的推移“上升”到顶部,这样它们就不会挨饿了。

下面是我对.NET堆的尝试

public abstract class Heap<T> : IEnumerable<T>
{
    private const int InitialCapacity = 0;
    private const int GrowFactor = 2;
    private const int MinGrow = 1;

    private int _capacity = InitialCapacity;
    private T[] _heap = new T[InitialCapacity];
    private int _tail = 0;

    public int Count { get { return _tail; } }
    public int Capacity { get { return _capacity; } }

    protected Comparer<T> Comparer { get; private set; }
    protected abstract bool Dominates(T x, T y);

    protected Heap() : this(Comparer<T>.Default)
    {
    }

    protected Heap(Comparer<T> comparer) : this(Enumerable.Empty<T>(), comparer)
    {
    }

    protected Heap(IEnumerable<T> collection)
        : this(collection, Comparer<T>.Default)
    {
    }

    protected Heap(IEnumerable<T> collection, Comparer<T> comparer)
    {
        if (collection == null) throw new ArgumentNullException("collection");
        if (comparer == null) throw new ArgumentNullException("comparer");

        Comparer = comparer;

        foreach (var item in collection)
        {
            if (Count == Capacity)
                Grow();

            _heap[_tail++] = item;
        }

        for (int i = Parent(_tail - 1); i >= 0; i--)
            BubbleDown(i);
    }

    public void Add(T item)
    {
        if (Count == Capacity)
            Grow();

        _heap[_tail++] = item;
        BubbleUp(_tail - 1);
    }

    private void BubbleUp(int i)
    {
        if (i == 0 || Dominates(_heap[Parent(i)], _heap[i])) 
            return; //correct domination (or root)

        Swap(i, Parent(i));
        BubbleUp(Parent(i));
    }

    public T GetMin()
    {
        if (Count == 0) throw new InvalidOperationException("Heap is empty");
        return _heap[0];
    }

    public T ExtractDominating()
    {
        if (Count == 0) throw new InvalidOperationException("Heap is empty");
        T ret = _heap[0];
        _tail--;
        Swap(_tail, 0);
        BubbleDown(0);
        return ret;
    }

    private void BubbleDown(int i)
    {
        int dominatingNode = Dominating(i);
        if (dominatingNode == i) return;
        Swap(i, dominatingNode);
        BubbleDown(dominatingNode);
    }

    private int Dominating(int i)
    {
        int dominatingNode = i;
        dominatingNode = GetDominating(YoungChild(i), dominatingNode);
        dominatingNode = GetDominating(OldChild(i), dominatingNode);

        return dominatingNode;
    }

    private int GetDominating(int newNode, int dominatingNode)
    {
        if (newNode < _tail && !Dominates(_heap[dominatingNode], _heap[newNode]))
            return newNode;
        else
            return dominatingNode;
    }

    private void Swap(int i, int j)
    {
        T tmp = _heap[i];
        _heap[i] = _heap[j];
        _heap[j] = tmp;
    }

    private static int Parent(int i)
    {
        return (i + 1)/2 - 1;
    }

    private static int YoungChild(int i)
    {
        return (i + 1)*2 - 1;
    }

    private static int OldChild(int i)
    {
        return YoungChild(i) + 1;
    }

    private void Grow()
    {
        int newCapacity = _capacity*GrowFactor + MinGrow;
        var newHeap = new T[newCapacity];
        Array.Copy(_heap, newHeap, _capacity);
        _heap = newHeap;
        _capacity = newCapacity;
    }

    public IEnumerator<T> GetEnumerator()
    {
        return _heap.Take(Count).GetEnumerator();
    }

    IEnumerator IEnumerable.GetEnumerator()
    {
        return GetEnumerator();
    }
}

public class MaxHeap<T> : Heap<T>
{
    public MaxHeap()
        : this(Comparer<T>.Default)
    {
    }

    public MaxHeap(Comparer<T> comparer)
        : base(comparer)
    {
    }

    public MaxHeap(IEnumerable<T> collection, Comparer<T> comparer)
        : base(collection, comparer)
    {
    }

    public MaxHeap(IEnumerable<T> collection) : base(collection)
    {
    }

    protected override bool Dominates(T x, T y)
    {
        return Comparer.Compare(x, y) >= 0;
    }
}

public class MinHeap<T> : Heap<T>
{
    public MinHeap()
        : this(Comparer<T>.Default)
    {
    }

    public MinHeap(Comparer<T> comparer)
        : base(comparer)
    {
    }

    public MinHeap(IEnumerable<T> collection) : base(collection)
    {
    }

    public MinHeap(IEnumerable<T> collection, Comparer<T> comparer)
        : base(collection, comparer)
    {
    }

    protected override bool Dominates(T x, T y)
    {
        return Comparer.Compare(x, y) <= 0;
    }
}

一些测试:

[TestClass]
public class HeapTests
{
    [TestMethod]
    public void TestHeapBySorting()
    {
        var minHeap = new MinHeap<int>(new[] {9, 8, 4, 1, 6, 2, 7, 4, 1, 2});
        AssertHeapSort(minHeap, minHeap.OrderBy(i => i).ToArray());

        minHeap = new MinHeap<int> { 7, 5, 1, 6, 3, 2, 4, 1, 2, 1, 3, 4, 7 };
        AssertHeapSort(minHeap, minHeap.OrderBy(i => i).ToArray());

        var maxHeap = new MaxHeap<int>(new[] {1, 5, 3, 2, 7, 56, 3, 1, 23, 5, 2, 1});
        AssertHeapSort(maxHeap, maxHeap.OrderBy(d => -d).ToArray());

        maxHeap = new MaxHeap<int> {2, 6, 1, 3, 56, 1, 4, 7, 8, 23, 4, 5, 7, 34, 1, 4};
        AssertHeapSort(maxHeap, maxHeap.OrderBy(d => -d).ToArray());
    }

    private static void AssertHeapSort(Heap<int> heap, IEnumerable<int> expected)
    {
        var sorted = new List<int>();
        while (heap.Count > 0)
            sorted.Add(heap.ExtractDominating());

        Assert.IsTrue(sorted.SequenceEqual(expected));
    }
}