我试着用R来计算矩阵中一系列值的移动平均值。R中似乎没有一个内置函数可以让我计算移动平均线。有任何软件包提供这样的服务吗?还是需要我自己写?


当前回答

您可以使用RcppRoll来实现用c++编写的快速移动平均线。只需调用roll_mean函数。文档可以在这里找到。

否则,这个(较慢的)for循环应该可以做到:

ma <- function(arr, n=15){
  res = arr
  for(i in n:length(arr)){
    res[i] = mean(arr[(i-n):i])
  }
  res
}

其他回答

虽然有点慢,但你也可以使用zoo::rollapply在矩阵上执行计算。

reqd_ma <- rollapply(x, FUN = mean, width = n)

其中x为数据集,FUN = mean为函数;你也可以改变它为min, max, sd等,宽度是滚动窗口。

您可以使用RcppRoll来实现用c++编写的快速移动平均线。只需调用roll_mean函数。文档可以在这里找到。

否则,这个(较慢的)for循环应该可以做到:

ma <- function(arr, n=15){
  res = arr
  for(i in n:length(arr)){
    res[i] = mean(arr[(i-n):i])
  }
  res
}

在数据。表1.12.0增加了新的滚动平均值函数,以计算快速和准确的滚动平均值,仔细处理NA, NaN和+Inf, -Inf值。

由于在这个问题中没有可重复的例子,所以在这里没有更多的问题要解决。

你可以在手册中找到更多关于?frollmean的信息,也可以在?frollmean网站上找到。

下面是手册中的例子:

library(data.table)
d = as.data.table(list(1:6/2, 3:8/4))

# rollmean of single vector and single window
frollmean(d[, V1], 3)

# multiple columns at once
frollmean(d, 3)

# multiple windows at once
frollmean(d[, .(V1)], c(3, 4))

# multiple columns and multiple windows at once
frollmean(d, c(3, 4))

## three above are embarrassingly parallel using openmp

我使用聚合和一个由rep()创建的向量。这样做的好处是可以使用cbind()一次在数据帧中聚合1个以上的列。下面是一个长度为1000的向量(v)的移动平均值为60的例子:

v=1:1000*0.002+rnorm(1000)
mrng=rep(1:round(length(v)/60+0.5), length.out=length(v), each=60)
aggregate(v~mrng, FUN=mean, na.rm=T)

请注意,rep中的第一个参数只是根据向量的长度和要平均的数量,为移动范围获取足够的唯一值;第二个参数保持长度等于向量长度,最后一个参数重复第一个参数的值的次数与平均周期相同。

总的来说,你可以使用几个函数(中值,最大值,最小值)-例如所示的平均值。同样,could可以使用cbind公式对数据帧中的多个(或所有)列执行此操作。

你可以通过以下方法计算窗口宽度为k的向量x的移动平均值:

apply(embed(x, k), 1, mean)