我有一个SQL Server表,其中有大约50,000行。我想随机选择大约5000行。我想到了一种复杂的方法,创建一个带有“随机数”列的临时表,将我的表复制到其中,循环遍历临时表并使用RAND()更新每一行,然后从该表中选择随机数列< 0.1的列。我正在寻找一种更简单的方法,如果可能的话,在一个单一的声明中。

本文建议使用NEWID()函数。这看起来很有希望,但我不知道如何可靠地选择一定百分比的行。

有人做过这个吗?什么好主意吗?


当前回答

这对我来说很管用:

SELECT * FROM table_name
ORDER BY RANDOM()
LIMIT [number]

其他回答

newid()似乎不能在where子句中使用,所以这个解决方案需要一个内部查询:

SELECT *
FROM (
    SELECT *, ABS(CHECKSUM(NEWID())) AS Rnd
    FROM MyTable
) vw
WHERE Rnd % 100 < 10        --10%

我在子查询中使用它,它在子查询中返回我相同的行

 SELECT  ID ,
            ( SELECT TOP 1
                        ImageURL
              FROM      SubTable 
              ORDER BY  NEWID()
            ) AS ImageURL,
            GETUTCDATE() ,
            1
    FROM    Mytable

然后我解决了包括父表变量在哪里

SELECT  ID ,
            ( SELECT TOP 1
                        ImageURL
              FROM      SubTable 
              Where Mytable.ID>0
              ORDER BY  NEWID()
            ) AS ImageURL,
            GETUTCDATE() ,
            1
    FROM    Mytable

注意where条件

Newid ()/order by可以工作,但对于大型结果集来说代价非常高,因为它必须为每一行生成一个id,然后对它们进行排序。

从性能的角度来看,TABLESAMPLE()很好,但是您将得到结果的聚集(将返回页面上的所有行)。

为了获得更好的真实随机样本,最好的方法是随机过滤掉行。我在SQL Server Books Online文章使用TABLESAMPLE限制结果集中找到了以下代码示例:

If you really want a random sample of individual rows, modify your query to filter out rows randomly, instead of using TABLESAMPLE. For example, the following query uses the NEWID function to return approximately one percent of the rows of the Sales.SalesOrderDetail table: SELECT * FROM Sales.SalesOrderDetail WHERE 0.01 >= CAST(CHECKSUM(NEWID(),SalesOrderID) & 0x7fffffff AS float) / CAST (0x7fffffff AS int) The SalesOrderID column is included in the CHECKSUM expression so that NEWID() evaluates once per row to achieve sampling on a per-row basis. The expression CAST(CHECKSUM(NEWID(), SalesOrderID) & 0x7fffffff AS float / CAST (0x7fffffff AS int) evaluates to a random float value between 0 and 1.

当对一个有1,000,000行的表运行时,下面是我的结果:

SET STATISTICS TIME ON
SET STATISTICS IO ON

/* newid()
   rows returned: 10000
   logical reads: 3359
   CPU time: 3312 ms
   elapsed time = 3359 ms
*/
SELECT TOP 1 PERCENT Number
FROM Numbers
ORDER BY newid()

/* TABLESAMPLE
   rows returned: 9269 (varies)
   logical reads: 32
   CPU time: 0 ms
   elapsed time: 5 ms
*/
SELECT Number
FROM Numbers
TABLESAMPLE (1 PERCENT)

/* Filter
   rows returned: 9994 (varies)
   logical reads: 3359
   CPU time: 641 ms
   elapsed time: 627 ms
*/    
SELECT Number
FROM Numbers
WHERE 0.01 >= CAST(CHECKSUM(NEWID(), Number) & 0x7fffffff AS float) 
              / CAST (0x7fffffff AS int)

SET STATISTICS IO OFF
SET STATISTICS TIME OFF

如果您可以使用TABLESAMPLE,它将为您提供最佳性能。否则使用newwid ()/filter方法。如果结果集很大,Newid ()/order by应该是最后的选择。

我还没看出来答案有什么不同。我有一个额外的约束条件,给定一个初始种子,每次都要选择相同的行集。

对于MS SQL:

最小的例子:

select top 10 percent *
from table_name
order by rand(checksum(*))

规范化执行时间:1.00

NewId()例子:

select top 10 percent *
from table_name
order by newid()

规范化执行时间:1.02

NewId()比rand(checksum(*))慢不了多少,所以您可能不希望对大型记录集使用它。

初始种子选择:

declare @seed int
set @seed = Year(getdate()) * month(getdate()) /* any other initial seed here */

select top 10 percent *
from table_name
order by rand(checksum(*) % @seed) /* any other math function here */

如果给定一个种子,你需要选择相同的集合,这似乎是可行的。

在MySQL中,你可以这样做:

SELECT `PRIMARY_KEY`, rand() FROM table ORDER BY rand() LIMIT 5000;