在接下来的TensorFlow函数中,我们必须在最后一层中输入人工神经元的激活。我能理解。但我不明白为什么叫logits?这不是一个数学函数吗?

loss_function = tf.nn.softmax_cross_entropy_with_logits(
     logits = last_layer,
     labels = target_output
)

当前回答

我只是添加了这个说明,以便任何向下滚动这么多的人至少可以得到正确的答案,因为有这么多错误的答案被点赞。

Diansheng和JakeJ的回答是正确的。 Shital Shah发布的一个新答案是一个更好、更完整的答案。


是的,logit在统计学中是一个数学函数,但在神经网络中使用的logit是不同的。统计逻辑在这里根本说不通。


我在任何地方都找不到正式的定义,但logit的基本意思是:

原始的预测来自神经网络的最后一层。 1. 这就是你应用argmax函数来得到预测类的张量。 2. 这就是你输入softmax函数来得到预测类别的概率的张量。


另外,在官方tensorflow网站上的教程中:

分对数层 神经网络的最后一层是logits层,它将返回我们预测的原始值。我们创建了一个有10个神经元的密集层(每个目标类0-9一个),线性激活(默认值): Logits = tf.layers.dense(输入=dropout,单位=10)


如果你仍然感到困惑,情况是这样的:

raw_predictions = neural_net(input_layer)
predicted_class_index_by_raw = argmax(raw_predictions)
probabilities = softmax(raw_predictions)
predicted_class_index_by_prob = argmax(probabilities)

其中predicted_class_index_by_raw和predicted_class_index_by_prob将相等。

上面代码中raw_forecasts的另一个名字是logit。


至于为什么logit…我不知道。对不起。 [编辑:看看这个词背后的历史动机。]


琐事

不过,如果你愿意,你可以将统计logit应用于softmax函数的概率。

如果某一类的概率是p, 那么该类的log-odds是L = logit(p)

同样,使用sigmoid函数,该类的概率可以恢复为p = sigmoid(L)。

但是计算对数概率不是很有用。

其他回答

它们基本上是你能从网络中得到的最完整的学习模型,在它被压缩到只适用于我们感兴趣的类之前。看看一些研究人员是如何使用它们来训练基于深度网络学习的浅神经网络的:https://arxiv.org/pdf/1312.6184.pdf

这有点像在详细学习一门学科时,你会学到很多次要的东西,但在教学生时,你会试图把它压缩到最简单的情况。如果这个学生现在试图教,这将是相当困难的,但他能够很好地描述它,足以使用语言。

Logits是一个重载的术语,可以有很多不同的含义:


在数学中,Logit是一个将概率([0,1])映射到R ((-inf, inf))的函数。

概率0.5对应logit为0。负logit对应概率小于0.5,正到>等于0.5。

在ML中,它可以是

原始向量(非规格化)的预测即一种分类 生成模型,然后通常将其传递给规范化 函数。如果模型正在解决一个多类分类 问题是,对数通常成为softmax函数的输入。的 然后,Softmax函数生成一个(标准化)概率向量 每个可能的类都有一个值。

logit有时也指sigmoid函数的元素逆。

日志

分类模型生成的原始(非归一化)预测向量,然后通常将其传递给归一化函数。如果模型要解决一个多类分类问题,对数通常会成为softmax函数的输入。然后,softmax函数生成一个(规范化)概率向量,每个可能的类都有一个值。

此外,对数有时指的是sigmoid函数的元素逆。有关更多信息,请参见tf.nn.sigmoid_cross_entropy_with_logits。

官方的张量流文档

我只是添加了这个说明,以便任何向下滚动这么多的人至少可以得到正确的答案,因为有这么多错误的答案被点赞。

Diansheng和JakeJ的回答是正确的。 Shital Shah发布的一个新答案是一个更好、更完整的答案。


是的,logit在统计学中是一个数学函数,但在神经网络中使用的logit是不同的。统计逻辑在这里根本说不通。


我在任何地方都找不到正式的定义,但logit的基本意思是:

原始的预测来自神经网络的最后一层。 1. 这就是你应用argmax函数来得到预测类的张量。 2. 这就是你输入softmax函数来得到预测类别的概率的张量。


另外,在官方tensorflow网站上的教程中:

分对数层 神经网络的最后一层是logits层,它将返回我们预测的原始值。我们创建了一个有10个神经元的密集层(每个目标类0-9一个),线性激活(默认值): Logits = tf.layers.dense(输入=dropout,单位=10)


如果你仍然感到困惑,情况是这样的:

raw_predictions = neural_net(input_layer)
predicted_class_index_by_raw = argmax(raw_predictions)
probabilities = softmax(raw_predictions)
predicted_class_index_by_prob = argmax(probabilities)

其中predicted_class_index_by_raw和predicted_class_index_by_prob将相等。

上面代码中raw_forecasts的另一个名字是logit。


至于为什么logit…我不知道。对不起。 [编辑:看看这个词背后的历史动机。]


琐事

不过,如果你愿意,你可以将统计logit应用于softmax函数的概率。

如果某一类的概率是p, 那么该类的log-odds是L = logit(p)

同样,使用sigmoid函数,该类的概率可以恢复为p = sigmoid(L)。

但是计算对数概率不是很有用。

以下是一个简明的答案,供将来的读者参考。Tensorflow的logit被定义为不应用激活函数的神经元输出:

logit = w*x + b,

X:输入,w:权重,b:偏差。就是这样。


以下内容与这个问题无关。

关于历史课程,请阅读其他答案。向Tensorflow“创造性地”令人困惑的命名惯例致敬。在PyTorch中,只有一个CrossEntropyLoss,它接受未激活的输出。卷积、矩阵乘法和激活都是同一层次的运算。设计更加模块化,更少混乱。这也是我从Tensorflow转向PyTorch的原因之一。