我希望遍历整个文件的每一行。一种方法是读取整个文件,将其保存到一个列表中,然后遍历感兴趣的行。这种方法使用大量内存,所以我正在寻找一种替代方法。

到目前为止我的代码:

for each_line in fileinput.input(input_file):
    do_something(each_line)

    for each_line_again in fileinput.input(input_file):
        do_something(each_line_again)

执行这段代码会给出一个错误消息:设备处于活动状态。

有什么建议吗?

目的是计算成对字符串的相似性,这意味着对于文件中的每一行,我想计算与其他每一行的Levenshtein距离。

编辑:在这个问题8个月后提出的一个相关问题有许多有用的答案和评论。要更深入地了解python逻辑,请阅读以下相关问题:如何在python中逐行读取文件?


当前回答

我强烈建议不要使用默认的文件加载,因为它非常慢。你应该研究一下numpy函数和IOpro函数(例如numpy.loadtxt())。

http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html

https://store.continuum.io/cshop/iopro/

然后你可以把你的成对操作分解成几个块:

import numpy as np
import math

lines_total = n    
similarity = np.zeros(n,n)
lines_per_chunk = m
n_chunks = math.ceil(float(n)/m)
for i in xrange(n_chunks):
    for j in xrange(n_chunks):
        chunk_i = (function of your choice to read lines i*lines_per_chunk to (i+1)*lines_per_chunk)
        chunk_j = (function of your choice to read lines j*lines_per_chunk to (j+1)*lines_per_chunk)
        similarity[i*lines_per_chunk:(i+1)*lines_per_chunk,
                   j*lines_per_chunk:(j+1)*lines_per_chunk] = fast_operation(chunk_i, chunk_j) 

以块方式加载数据,然后对其进行矩阵操作,几乎总是比一个元素一个元素地加载数据快得多!!

其他回答

来自python文档fileinput.input():

这将遍历sys. exe中列出的所有文件的行。Argv[1:],默认为sys。如果列表为空,则输入

进一步,函数的定义为:

fileinput.FileInput([files[, inplace[, backup[, mode[, openhook]]]]])

字里行间,这告诉我文件可以是一个列表,所以你可以有这样的东西:

for each_line in fileinput.input([input_file, input_file]):
  do_something(each_line)

更多信息请参见这里

这是python中读取文件的一种可能方式:

f = open(input_file)
for line in f:
    do_stuff(line)
f.close()

它不分配一个完整的列表。它在直线上迭代。

Katrielalex提供了打开和读取一个文件的方法。

不管你的算法是如何运行的,它会为文件的每一行读取整个文件。这意味着,如果N是文件中的行数,那么读取文件的总量(以及计算Levenshtein距离)将是N*N。由于您关心文件大小,并且不想将其保存在内存中,因此我关心的是所产生的二次运行时。你的算法属于O(n^2)类算法,通常可以通过专门化来改进。

我怀疑您已经知道这里内存与运行时的权衡,但是您可能想要研究是否有一种并行计算多个Levenshtein距离的有效方法。如果是这样的话,在这里分享你的解决方案会很有趣。

你的文件有多少行,你的算法必须在什么样的机器(mem和cpu功率)上运行,以及容忍的运行时间是多少?

代码如下所示:

with f_outer as open(input_file, 'r'):
    for line_outer in f_outer:
        with f_inner as open(input_file, 'r'):
            for line_inner in f_inner:
                compute_distance(line_outer, line_inner)

但问题是你如何存储距离(矩阵?),你能获得一个优势准备例如outer_line处理,或缓存一些中间结果以供重用。

我强烈建议不要使用默认的文件加载,因为它非常慢。你应该研究一下numpy函数和IOpro函数(例如numpy.loadtxt())。

http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html

https://store.continuum.io/cshop/iopro/

然后你可以把你的成对操作分解成几个块:

import numpy as np
import math

lines_total = n    
similarity = np.zeros(n,n)
lines_per_chunk = m
n_chunks = math.ceil(float(n)/m)
for i in xrange(n_chunks):
    for j in xrange(n_chunks):
        chunk_i = (function of your choice to read lines i*lines_per_chunk to (i+1)*lines_per_chunk)
        chunk_j = (function of your choice to read lines j*lines_per_chunk to (j+1)*lines_per_chunk)
        similarity[i*lines_per_chunk:(i+1)*lines_per_chunk,
                   j*lines_per_chunk:(j+1)*lines_per_chunk] = fast_operation(chunk_i, chunk_j) 

以块方式加载数据,然后对其进行矩阵操作,几乎总是比一个元素一个元素地加载数据快得多!!

去除换行符:

with open(file_path, 'rU') as f:
    for line_terminated in f:
        line = line_terminated.rstrip('\n')
        ...

在通用换行支持下,所有文本文件行似乎都以'\n'结束,无论文件中的终止符是'\r'、'\n'还是'\r\n'。

EDIT -指定通用换行支持:

Python 2 on Unix - open(file_path, mode='rU') - required[谢谢@Dave] Windows上的Python 2 - open(file_path, mode='rU') -可选 Python 3 - open(file_path, newline=None) -可选

newline参数仅在Python 3中支持,默认为None。mode参数在所有情况下默认为'r'。U在Python 3中已弃用。在Windows上的python2中,一些其他机制似乎将\r\n转换为\n。

文档:

open()用于Python 2 open()用于Python 3

保存本机行终止符:

with open(file_path, 'rb') as f:
    with line_native_terminated in f:
        ...

二进制模式仍然可以用in将文件解析成行。每一行都有它在文件中的终止符。

感谢@katrielalex的回答,Python的open() doc和iPython实验。