我希望遍历整个文件的每一行。一种方法是读取整个文件,将其保存到一个列表中,然后遍历感兴趣的行。这种方法使用大量内存,所以我正在寻找一种替代方法。

到目前为止我的代码:

for each_line in fileinput.input(input_file):
    do_something(each_line)

    for each_line_again in fileinput.input(input_file):
        do_something(each_line_again)

执行这段代码会给出一个错误消息:设备处于活动状态。

有什么建议吗?

目的是计算成对字符串的相似性,这意味着对于文件中的每一行,我想计算与其他每一行的Levenshtein距离。

编辑:在这个问题8个月后提出的一个相关问题有许多有用的答案和评论。要更深入地了解python逻辑,请阅读以下相关问题:如何在python中逐行读取文件?


当前回答

来自python文档fileinput.input():

这将遍历sys. exe中列出的所有文件的行。Argv[1:],默认为sys。如果列表为空,则输入

进一步,函数的定义为:

fileinput.FileInput([files[, inplace[, backup[, mode[, openhook]]]]])

字里行间,这告诉我文件可以是一个列表,所以你可以有这样的东西:

for each_line in fileinput.input([input_file, input_file]):
  do_something(each_line)

更多信息请参见这里

其他回答

需要经常从上一个位置读取一个大文件?

我创建了一个脚本,用于每天多次删除Apache access.log文件。 所以我需要在最后一次执行期间解析的最后一行上设置位置光标。 为此,我使用了file.seek()和file.seek()方法,它们允许将光标存储在文件中。

我的代码:

ENCODING = "utf8"
CURRENT_FILE_DIR = os.path.dirname(os.path.abspath(__file__))

# This file is used to store the last cursor position
cursor_position = os.path.join(CURRENT_FILE_DIR, "access_cursor_position.log")

# Log file with new lines
log_file_to_cut = os.path.join(CURRENT_FILE_DIR, "access.log")
cut_file = os.path.join(CURRENT_FILE_DIR, "cut_access", "cut.log")

# Set in from_line 
from_position = 0
try:
    with open(cursor_position, "r", encoding=ENCODING) as f:
        from_position = int(f.read())
except Exception as e:
    pass

# We read log_file_to_cut to put new lines in cut_file
with open(log_file_to_cut, "r", encoding=ENCODING) as f:
    with open(cut_file, "w", encoding=ENCODING) as fw:
        # We set cursor to the last position used (during last run of script)
        f.seek(from_position)
        for line in f:
            fw.write("%s" % (line))

    # We save the last position of cursor for next usage
    with open(cursor_position, "w", encoding=ENCODING) as fw:
        fw.write(str(f.tell()))

这是python中读取文件的一种可能方式:

f = open(input_file)
for line in f:
    do_stuff(line)
f.close()

它不分配一个完整的列表。它在直线上迭代。

正确的、完全python式的读取文件的方法如下:

with open(...) as f:
    for line in f:
        # Do something with 'line'

with语句处理打开和关闭文件,包括在内部块中引发异常。f中的for行将文件对象f视为可迭代对象,它自动使用缓冲I/O和内存管理,因此您不必担心大文件。

应该有一种——最好只有一种——明显的方法来做到这一点。

我强烈建议不要使用默认的文件加载,因为它非常慢。你应该研究一下numpy函数和IOpro函数(例如numpy.loadtxt())。

http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html

https://store.continuum.io/cshop/iopro/

然后你可以把你的成对操作分解成几个块:

import numpy as np
import math

lines_total = n    
similarity = np.zeros(n,n)
lines_per_chunk = m
n_chunks = math.ceil(float(n)/m)
for i in xrange(n_chunks):
    for j in xrange(n_chunks):
        chunk_i = (function of your choice to read lines i*lines_per_chunk to (i+1)*lines_per_chunk)
        chunk_j = (function of your choice to read lines j*lines_per_chunk to (j+1)*lines_per_chunk)
        similarity[i*lines_per_chunk:(i+1)*lines_per_chunk,
                   j*lines_per_chunk:(j+1)*lines_per_chunk] = fast_operation(chunk_i, chunk_j) 

以块方式加载数据,然后对其进行矩阵操作,几乎总是比一个元素一个元素地加载数据快得多!!

两种内存高效方法按顺序排列(第一种是最好的)-

python 2.5及以上版本支持with -的使用 如果你真的想控制读取量,可以使用yield

1. with的用法

With是读取大文件的一种漂亮而有效的python方法。优点- 1)文件对象在使用执行块退出后自动关闭。2) with块内部的异常处理。3) memory for循环逐行遍历f文件对象。在内部它做缓冲IO(优化昂贵的IO操作)和内存管理。

with open("x.txt") as f:
    for line in f:
        do something with data

2. 产量的使用

有时,人们可能希望对每次迭代中读取的量进行更细粒度的控制。在这种情况下,使用iter & yield。注意,使用这种方法需要在结束时显式地关闭文件。

def readInChunks(fileObj, chunkSize=2048):
    """
    Lazy function to read a file piece by piece.
    Default chunk size: 2kB.

    """
    while True:
        data = fileObj.read(chunkSize)
        if not data:
            break
        yield data

f = open('bigFile')
for chunk in readInChunks(f):
    do_something(chunk)
f.close()

陷阱和为了完整性——下面的方法对于读取大文件来说不是那么好或不那么优雅,但请阅读以获得全面的理解。

在Python中,从文件中读取行最常见的方法是执行以下操作:

for line in open('myfile','r').readlines():
    do_something(line)

但是,当完成此操作时,readlines()函数(与read()函数相同)将整个文件加载到内存中,然后对其进行迭代。对于大文件,稍微好一点的方法(上面提到的两种方法是最好的)是使用fileinput模块,如下所示:

import fileinput

for line in fileinput.input(['myfile']):
    do_something(line)

fileinput.input()调用按顺序读取行,但在读取后不将它们保存在内存中,甚至只是这样,因为python中的file是可迭代的。

参考文献

带有语句的Python