如何生成列表的所有排列?例如:

permutations([])
[]

permutations([1])
[1]

permutations([1, 2])
[1, 2]
[2, 1]

permutations([1, 2, 3])
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]

当前回答

我看到在这些递归函数中进行了很多迭代,而不是纯粹的递归。。。

所以对于那些连一个循环都不能遵守的人来说,这里有一个粗略的、完全不必要的完全递归的解决方案

def all_insert(x, e, i=0):
    return [x[0:i]+[e]+x[i:]] + all_insert(x,e,i+1) if i<len(x)+1 else []

def for_each(X, e):
    return all_insert(X[0], e) + for_each(X[1:],e) if X else []

def permute(x):
    return [x] if len(x) < 2 else for_each( permute(x[1:]) , x[0])


perms = permute([1,2,3])

其他回答

对于Python 2.6及以上版本:

import itertools
itertools.permutations([1, 2, 3])

这将作为生成器返回。使用列表(排列(xs))作为列表返回。

这里有一个算法,它在不创建新的中间列表的情况下处理列表,类似于Ber在https://stackoverflow.com/a/108651/184528.

def permute(xs, low=0):
    if low + 1 >= len(xs):
        yield xs
    else:
        for p in permute(xs, low + 1):
            yield p        
        for i in range(low + 1, len(xs)):        
            xs[low], xs[i] = xs[i], xs[low]
            for p in permute(xs, low + 1):
                yield p        
            xs[low], xs[i] = xs[i], xs[low]

for p in permute([1, 2, 3, 4]):
    print p

您可以在这里亲自尝试代码:http://repl.it/J9v

无论如何,我们可以使用sympy库,也支持多集合排列

import sympy
from sympy.utilities.iterables import multiset_permutations
t = [1,2,3]
p = list(multiset_permutations(t))
print(p)

# [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

答案的灵感来自获取numpy数组的所有排列

以下代码是给定列表的就地排列,作为生成器实现。由于它只返回对列表的引用,因此不应在生成器外部修改列表。该解决方案是非递归的,因此使用了低内存。还可以很好地处理输入列表中元素的多个副本。

def permute_in_place(a):
    a.sort()
    yield list(a)

    if len(a) <= 1:
        return

    first = 0
    last = len(a)
    while 1:
        i = last - 1

        while 1:
            i = i - 1
            if a[i] < a[i+1]:
                j = last - 1
                while not (a[i] < a[j]):
                    j = j - 1
                a[i], a[j] = a[j], a[i] # swap the values
                r = a[i+1:last]
                r.reverse()
                a[i+1:last] = r
                yield list(a)
                break
            if i == first:
                a.reverse()
                return

if __name__ == '__main__':
    for n in range(5):
        for a in permute_in_place(range(1, n+1)):
            print a
        print

    for a in permute_in_place([0, 0, 1, 1, 1]):
        print a
    print

这是初始排序后生成排列的渐近最优方式O(n*n!)。

有n个!最多进行一次置换,且具有下一次置换(..),以O(n)时间复杂度运行

在3个步骤中,

找到最大的j,使a[j]可以增加以最小可行量增加a[j]找到扩展新a[0..j]的字典最少方法

'''
Lexicographic permutation generation

consider example array state of [1,5,6,4,3,2] for sorted [1,2,3,4,5,6]
after 56432(treat as number) ->nothing larger than 6432(using 6,4,3,2) beginning with 5
so 6 is next larger and 2345(least using numbers other than 6)
so [1, 6,2,3,4,5]
'''
def hasNextPermutation(array, len):
    ' Base Condition '
    if(len ==1):
        return False
    '''
    Set j = last-2 and find first j such that a[j] < a[j+1]
    If no such j(j==-1) then we have visited all permutations
    after this step a[j+1]>=..>=a[len-1] and a[j]<a[j+1]

    a[j]=5 or j=1, 6>5>4>3>2
    '''
    j = len -2
    while (j >= 0 and array[j] >= array[j + 1]):
        j= j-1
    if(j==-1):
        return False
    # print(f"After step 2 for j {j}  {array}")
    '''
    decrease l (from n-1 to j) repeatedly until a[j]<a[l]
    Then swap a[j], a[l]
    a[l] is the smallest element > a[j] that can follow a[l]...a[j-1] in permutation
    before swap we have a[j+1]>=..>=a[l-1]>=a[l]>a[j]>=a[l+1]>=..>=a[len-1]
    after swap -> a[j+1]>=..>=a[l-1]>=a[j]>a[l]>=a[l+1]>=..>=a[len-1]

    a[l]=6 or l=2, j=1 just before swap [1, 5, 6, 4, 3, 2] 
    after swap [1, 6, 5, 4, 3, 2] a[l]=5, a[j]=6
    '''
    l = len -1
    while(array[j] >= array[l]):
        l = l-1
    # print(f"After step 3 for l={l}, j={j} before swap {array}")
    array[j], array[l] = array[l], array[j]
    # print(f"After step 3 for l={l} j={j} after swap {array}")
    '''
    Reverse a[j+1...len-1](both inclusive)

    after reversing [1, 6, 2, 3, 4, 5]
    '''
    array[j+1:len] = reversed(array[j+1:len])
    # print(f"After step 4 reversing {array}")
    return True

array = [1,2,4,4,5]
array.sort()
len = len(array)
count =1
print(array)
'''
The algorithm visits every permutation in lexicographic order
generating one by one
'''
while(hasNextPermutation(array, len)):
    print(array)
    count = count +1
# The number of permutations will be n! if no duplicates are present, else less than that
# [1,4,3,3,2] -> 5!/2!=60
print(f"Number of permutations: {count}")