如何生成列表的所有排列?例如:
permutations([])
[]
permutations([1])
[1]
permutations([1, 2])
[1, 2]
[2, 1]
permutations([1, 2, 3])
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]
如何生成列表的所有排列?例如:
permutations([])
[]
permutations([1])
[1]
permutations([1, 2])
[1, 2]
[2, 1]
permutations([1, 2, 3])
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]
当前回答
对于Python,我们可以使用itertools并导入排列和组合来解决问题
from itertools import product, permutations
A = ([1,2,3])
print (list(permutations(sorted(A),2)))
其他回答
这是初始排序后生成排列的渐近最优方式O(n*n!)。
有n个!最多进行一次置换,且具有下一次置换(..),以O(n)时间复杂度运行
在3个步骤中,
找到最大的j,使a[j]可以增加以最小可行量增加a[j]找到扩展新a[0..j]的字典最少方法
'''
Lexicographic permutation generation
consider example array state of [1,5,6,4,3,2] for sorted [1,2,3,4,5,6]
after 56432(treat as number) ->nothing larger than 6432(using 6,4,3,2) beginning with 5
so 6 is next larger and 2345(least using numbers other than 6)
so [1, 6,2,3,4,5]
'''
def hasNextPermutation(array, len):
' Base Condition '
if(len ==1):
return False
'''
Set j = last-2 and find first j such that a[j] < a[j+1]
If no such j(j==-1) then we have visited all permutations
after this step a[j+1]>=..>=a[len-1] and a[j]<a[j+1]
a[j]=5 or j=1, 6>5>4>3>2
'''
j = len -2
while (j >= 0 and array[j] >= array[j + 1]):
j= j-1
if(j==-1):
return False
# print(f"After step 2 for j {j} {array}")
'''
decrease l (from n-1 to j) repeatedly until a[j]<a[l]
Then swap a[j], a[l]
a[l] is the smallest element > a[j] that can follow a[l]...a[j-1] in permutation
before swap we have a[j+1]>=..>=a[l-1]>=a[l]>a[j]>=a[l+1]>=..>=a[len-1]
after swap -> a[j+1]>=..>=a[l-1]>=a[j]>a[l]>=a[l+1]>=..>=a[len-1]
a[l]=6 or l=2, j=1 just before swap [1, 5, 6, 4, 3, 2]
after swap [1, 6, 5, 4, 3, 2] a[l]=5, a[j]=6
'''
l = len -1
while(array[j] >= array[l]):
l = l-1
# print(f"After step 3 for l={l}, j={j} before swap {array}")
array[j], array[l] = array[l], array[j]
# print(f"After step 3 for l={l} j={j} after swap {array}")
'''
Reverse a[j+1...len-1](both inclusive)
after reversing [1, 6, 2, 3, 4, 5]
'''
array[j+1:len] = reversed(array[j+1:len])
# print(f"After step 4 reversing {array}")
return True
array = [1,2,4,4,5]
array.sort()
len = len(array)
count =1
print(array)
'''
The algorithm visits every permutation in lexicographic order
generating one by one
'''
while(hasNextPermutation(array, len)):
print(array)
count = count +1
# The number of permutations will be n! if no duplicates are present, else less than that
# [1,4,3,3,2] -> 5!/2!=60
print(f"Number of permutations: {count}")
功能性风格
def addperm(x,l):
return [ l[0:i] + [x] + l[i:] for i in range(len(l)+1) ]
def perm(l):
if len(l) == 0:
return [[]]
return [x for y in perm(l[1:]) for x in addperm(l[0],y) ]
print perm([ i for i in range(3)])
结果:
[[0, 1, 2], [1, 0, 2], [1, 2, 0], [0, 2, 1], [2, 0, 1], [2, 1, 0]]
我的Python解决方案:
def permutes(input,offset):
if( len(input) == offset ):
return [''.join(input)]
result=[]
for i in range( offset, len(input) ):
input[offset], input[i] = input[i], input[offset]
result = result + permutes(input,offset+1)
input[offset], input[i] = input[i], input[offset]
return result
# input is a "string"
# return value is a list of strings
def permutations(input):
return permutes( list(input), 0 )
# Main Program
print( permutations("wxyz") )
from typing import List
import time, random
def measure_time(func):
def wrapper_time(*args, **kwargs):
start_time = time.perf_counter()
res = func(*args, **kwargs)
end_time = time.perf_counter()
return res, end_time - start_time
return wrapper_time
class Solution:
def permute(self, nums: List[int], method: int = 1) -> List[List[int]]:
perms = []
perm = []
if method == 1:
_, time_perm = self._permute_recur(nums, 0, len(nums) - 1, perms)
elif method == 2:
_, time_perm = self._permute_recur_agian(nums, perm, perms)
print(perm)
return perms, time_perm
@measure_time
def _permute_recur(self, nums: List[int], l: int, r: int, perms: List[List[int]]):
# base case
if l == r:
perms.append(nums.copy())
for i in range(l, r + 1):
nums[l], nums[i] = nums[i], nums[l]
self._permute_recur(nums, l + 1, r , perms)
nums[l], nums[i] = nums[i], nums[l]
@measure_time
def _permute_recur_agian(self, nums: List[int], perm: List[int], perms_list: List[List[int]]):
"""
The idea is similar to nestedForLoops visualized as a recursion tree.
"""
if nums:
for i in range(len(nums)):
# perm.append(nums[i]) mistake, perm will be filled with all nums's elements.
# Method1 perm_copy = copy.deepcopy(perm)
# Method2 add in the parameter list using + (not in place)
# caveat: list.append is in-place , which is useful for operating on global element perms_list
# Note that:
# perms_list pass by reference. shallow copy
# perm + [nums[i]] pass by value instead of reference.
self._permute_recur_agian(nums[:i] + nums[i+1:], perm + [nums[i]], perms_list)
else:
# Arrive at the last loop, i.e. leaf of the recursion tree.
perms_list.append(perm)
if __name__ == "__main__":
array = [random.randint(-10, 10) for _ in range(3)]
sol = Solution()
# perms, time_perm = sol.permute(array, 1)
perms2, time_perm2 = sol.permute(array, 2)
print(perms2)
# print(perms, perms2)
# print(time_perm, time_perm2)
```
这是受Haskell实现使用列表理解的启发:
def permutation(list):
if len(list) == 0:
return [[]]
else:
return [[x] + ys for x in list for ys in permutation(delete(list, x))]
def delete(list, item):
lc = list[:]
lc.remove(item)
return lc