如何生成列表的所有排列?例如:

permutations([])
[]

permutations([1])
[1]

permutations([1, 2])
[1, 2]
[2, 1]

permutations([1, 2, 3])
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]

当前回答

def permutate(l):
    for i, x in enumerate(l):
        for y in l[i + 1:]:
            yield x, y


if __name__ == '__main__':
    print(list(permutate(list('abcd'))))
    print(list(permutate([1, 2, 3, 4])))

#[('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'c'), ('b', 'd'), ('c', 'd')]
#[(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]

其他回答

另一种方法(无libs)

def permutation(input):
    if len(input) == 1:
        return input if isinstance(input, list) else [input]

    result = []
    for i in range(len(input)):
        first = input[i]
        rest = input[:i] + input[i + 1:]
        rest_permutation = permutation(rest)
        for p in rest_permutation:
            result.append(first + p)
    return result

输入可以是字符串或列表

print(permutation('abcd'))
print(permutation(['a', 'b', 'c', 'd']))

免责声明:无耻的插件由包作者。:)

trotter包与大多数实现的不同之处在于,它生成的伪列表实际上不包含排列,而是描述排列与排序中各个位置之间的映射,从而可以处理非常大的排列“列表”,如本演示所示,它在一个包含字母表中所有字母排列的伪列表中执行相当即时的操作和查找,而不使用比典型网页更多的内存或处理。

在任何情况下,要生成排列列表,我们可以执行以下操作。

import trotter

my_permutations = trotter.Permutations(3, [1, 2, 3])

print(my_permutations)

for p in my_permutations:
    print(p)

输出:

A pseudo-list containing 6 3-permutations of [1, 2, 3].
[1, 2, 3]
[1, 3, 2]
[3, 1, 2]
[3, 2, 1]
[2, 3, 1]
[2, 1, 3]

我看到在这些递归函数中进行了很多迭代,而不是纯粹的递归。。。

所以对于那些连一个循环都不能遵守的人来说,这里有一个粗略的、完全不必要的完全递归的解决方案

def all_insert(x, e, i=0):
    return [x[0:i]+[e]+x[i:]] + all_insert(x,e,i+1) if i<len(x)+1 else []

def for_each(X, e):
    return all_insert(X[0], e) + for_each(X[1:],e) if X else []

def permute(x):
    return [x] if len(x) < 2 else for_each( permute(x[1:]) , x[0])


perms = permute([1,2,3])

递归之美:

>>> import copy
>>> def perm(prefix,rest):
...      for e in rest:
...              new_rest=copy.copy(rest)
...              new_prefix=copy.copy(prefix)
...              new_prefix.append(e)
...              new_rest.remove(e)
...              if len(new_rest) == 0:
...                      print new_prefix + new_rest
...                      continue
...              perm(new_prefix,new_rest)
... 
>>> perm([],['a','b','c','d'])
['a', 'b', 'c', 'd']
['a', 'b', 'd', 'c']
['a', 'c', 'b', 'd']
['a', 'c', 'd', 'b']
['a', 'd', 'b', 'c']
['a', 'd', 'c', 'b']
['b', 'a', 'c', 'd']
['b', 'a', 'd', 'c']
['b', 'c', 'a', 'd']
['b', 'c', 'd', 'a']
['b', 'd', 'a', 'c']
['b', 'd', 'c', 'a']
['c', 'a', 'b', 'd']
['c', 'a', 'd', 'b']
['c', 'b', 'a', 'd']
['c', 'b', 'd', 'a']
['c', 'd', 'a', 'b']
['c', 'd', 'b', 'a']
['d', 'a', 'b', 'c']
['d', 'a', 'c', 'b']
['d', 'b', 'a', 'c']
['d', 'b', 'c', 'a']
['d', 'c', 'a', 'b']
['d', 'c', 'b', 'a']

使用标准库中的itertools.permutations:

import itertools
list(itertools.permutations([1, 2, 3]))

从这里改编的是itertools.permutations如何实现的演示:

def permutations(elements):
    if len(elements) <= 1:
        yield elements
        return
    for perm in permutations(elements[1:]):
        for i in range(len(elements)):
            # nb elements[0:1] works in both string and list contexts
            yield perm[:i] + elements[0:1] + perm[i:]

itertools.permutations文档中列出了两种替代方法

def permutations(iterable, r=None):
    # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
    # permutations(range(3)) --> 012 021 102 120 201 210
    pool = tuple(iterable)
    n = len(pool)
    r = n if r is None else r
    if r > n:
        return
    indices = range(n)
    cycles = range(n, n-r, -1)
    yield tuple(pool[i] for i in indices[:r])
    while n:
        for i in reversed(range(r)):
            cycles[i] -= 1
            if cycles[i] == 0:
                indices[i:] = indices[i+1:] + indices[i:i+1]
                cycles[i] = n - i
            else:
                j = cycles[i]
                indices[i], indices[-j] = indices[-j], indices[i]
                yield tuple(pool[i] for i in indices[:r])
                break
        else:
            return

另一个基于itertools.product:

def permutations(iterable, r=None):
    pool = tuple(iterable)
    n = len(pool)
    r = n if r is None else r
    for indices in product(range(n), repeat=r):
        if len(set(indices)) == r:
            yield tuple(pool[i] for i in indices)