如何生成列表的所有排列?例如:
permutations([])
[]
permutations([1])
[1]
permutations([1, 2])
[1, 2]
[2, 1]
permutations([1, 2, 3])
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]
如何生成列表的所有排列?例如:
permutations([])
[]
permutations([1])
[1]
permutations([1, 2])
[1, 2]
[2, 1]
permutations([1, 2, 3])
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]
当前回答
以下代码是给定列表的就地排列,作为生成器实现。由于它只返回对列表的引用,因此不应在生成器外部修改列表。该解决方案是非递归的,因此使用了低内存。还可以很好地处理输入列表中元素的多个副本。
def permute_in_place(a):
a.sort()
yield list(a)
if len(a) <= 1:
return
first = 0
last = len(a)
while 1:
i = last - 1
while 1:
i = i - 1
if a[i] < a[i+1]:
j = last - 1
while not (a[i] < a[j]):
j = j - 1
a[i], a[j] = a[j], a[i] # swap the values
r = a[i+1:last]
r.reverse()
a[i+1:last] = r
yield list(a)
break
if i == first:
a.reverse()
return
if __name__ == '__main__':
for n in range(5):
for a in permute_in_place(range(1, n+1)):
print a
print
for a in permute_in_place([0, 0, 1, 1, 1]):
print a
print
其他回答
我使用了一种基于阶乘数系统的算法——对于长度为n的列表,您可以逐项组装每个排列,从每个阶段留下的项目中进行选择。第一项有n个选项,第二项有n-1个选项,最后一项只有一个选项,因此可以使用阶乘数系统中数字的数字作为索引。这是数字0到n-1对应于词典顺序中的所有可能的排列。
from math import factorial
def permutations(l):
permutations=[]
length=len(l)
for x in xrange(factorial(length)):
available=list(l)
newPermutation=[]
for radix in xrange(length, 0, -1):
placeValue=factorial(radix-1)
index=x/placeValue
newPermutation.append(available.pop(index))
x-=index*placeValue
permutations.append(newPermutation)
return permutations
permutations(range(3))
输出:
[[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]]
此方法是非递归的,但在我的计算机上速度稍慢,xrange在n!太大,无法转换为C长整数(我的n=13)。当我需要它的时候,它已经足够了,但它远没有itertools.permutations。
在我看来,一个很明显的方式可能是:
def permutList(l):
if not l:
return [[]]
res = []
for e in l:
temp = l[:]
temp.remove(e)
res.extend([[e] + r for r in permutList(temp)])
return res
此解决方案实现了一个生成器,以避免在内存中保留所有排列:
def permutations (orig_list):
if not isinstance(orig_list, list):
orig_list = list(orig_list)
yield orig_list
if len(orig_list) == 1:
return
for n in sorted(orig_list):
new_list = orig_list[:]
pos = new_list.index(n)
del(new_list[pos])
new_list.insert(0, n)
for resto in permutations(new_list[1:]):
if new_list[:1] + resto <> orig_list:
yield new_list[:1] + resto
对于性能,一个由Knuth启发的numpy解决方案(第22页):
from numpy import empty, uint8
from math import factorial
def perms(n):
f = 1
p = empty((2*n-1, factorial(n)), uint8)
for i in range(n):
p[i, :f] = i
p[i+1:2*i+1, :f] = p[:i, :f] # constitution de blocs
for j in range(i):
p[:i+1, f*(j+1):f*(j+2)] = p[j+1:j+i+2, :f] # copie de blocs
f = f*(i+1)
return p[:n, :]
复制大量内存可节省时间-它比列表(itertools.permutations(range(n))快20倍:
In [1]: %timeit -n10 list(permutations(range(10)))
10 loops, best of 3: 815 ms per loop
In [2]: %timeit -n100 perms(10)
100 loops, best of 3: 40 ms per loop
使用标准库中的itertools.permutations:
import itertools
list(itertools.permutations([1, 2, 3]))
从这里改编的是itertools.permutations如何实现的演示:
def permutations(elements):
if len(elements) <= 1:
yield elements
return
for perm in permutations(elements[1:]):
for i in range(len(elements)):
# nb elements[0:1] works in both string and list contexts
yield perm[:i] + elements[0:1] + perm[i:]
itertools.permutations文档中列出了两种替代方法
def permutations(iterable, r=None):
# permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC
# permutations(range(3)) --> 012 021 102 120 201 210
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
if r > n:
return
indices = range(n)
cycles = range(n, n-r, -1)
yield tuple(pool[i] for i in indices[:r])
while n:
for i in reversed(range(r)):
cycles[i] -= 1
if cycles[i] == 0:
indices[i:] = indices[i+1:] + indices[i:i+1]
cycles[i] = n - i
else:
j = cycles[i]
indices[i], indices[-j] = indices[-j], indices[i]
yield tuple(pool[i] for i in indices[:r])
break
else:
return
另一个基于itertools.product:
def permutations(iterable, r=None):
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
for indices in product(range(n), repeat=r):
if len(set(indices)) == r:
yield tuple(pool[i] for i in indices)