如何生成列表的所有排列?例如:

permutations([])
[]

permutations([1])
[1]

permutations([1, 2])
[1, 2]
[2, 1]

permutations([1, 2, 3])
[1, 2, 3]
[1, 3, 2]
[2, 1, 3]
[2, 3, 1]
[3, 1, 2]
[3, 2, 1]

当前回答

from typing import List
import time, random

def measure_time(func):
    def wrapper_time(*args, **kwargs):
        start_time = time.perf_counter()
        res = func(*args, **kwargs)
        end_time = time.perf_counter()
        return res, end_time - start_time

    return wrapper_time


class Solution:
    def permute(self, nums: List[int], method: int = 1) -> List[List[int]]:
        perms = []
        perm = []
        if method == 1:
            _, time_perm = self._permute_recur(nums, 0, len(nums) - 1, perms)
        elif method == 2:
            _, time_perm = self._permute_recur_agian(nums, perm, perms)
            print(perm)
        return perms, time_perm

    @measure_time
    def _permute_recur(self, nums: List[int], l: int, r: int, perms: List[List[int]]):
        # base case
        if l == r:
            perms.append(nums.copy())

        for i in range(l, r + 1):
            nums[l], nums[i] = nums[i], nums[l]
            self._permute_recur(nums, l + 1, r , perms)
            nums[l], nums[i] = nums[i], nums[l]

    @measure_time
    def _permute_recur_agian(self, nums: List[int], perm: List[int], perms_list: List[List[int]]):
        """
        The idea is similar to nestedForLoops visualized as a recursion tree.
        """
        if nums:
            for i in range(len(nums)):
                # perm.append(nums[i])  mistake, perm will be filled with all nums's elements.
                # Method1 perm_copy = copy.deepcopy(perm)
                # Method2 add in the parameter list using + (not in place)
                # caveat: list.append is in-place , which is useful for operating on global element perms_list
                # Note that:
                # perms_list pass by reference. shallow copy
                # perm + [nums[i]] pass by value instead of reference.
                self._permute_recur_agian(nums[:i] + nums[i+1:], perm + [nums[i]], perms_list)
        else:
            # Arrive at the last loop, i.e. leaf of the recursion tree.
            perms_list.append(perm)



if __name__ == "__main__":
    array = [random.randint(-10, 10) for _ in range(3)]
    sol = Solution()
    # perms, time_perm = sol.permute(array, 1)
    perms2, time_perm2 = sol.permute(array, 2)
    print(perms2)
    # print(perms, perms2)
    # print(time_perm, time_perm2)
```

其他回答

递归之美:

>>> import copy
>>> def perm(prefix,rest):
...      for e in rest:
...              new_rest=copy.copy(rest)
...              new_prefix=copy.copy(prefix)
...              new_prefix.append(e)
...              new_rest.remove(e)
...              if len(new_rest) == 0:
...                      print new_prefix + new_rest
...                      continue
...              perm(new_prefix,new_rest)
... 
>>> perm([],['a','b','c','d'])
['a', 'b', 'c', 'd']
['a', 'b', 'd', 'c']
['a', 'c', 'b', 'd']
['a', 'c', 'd', 'b']
['a', 'd', 'b', 'c']
['a', 'd', 'c', 'b']
['b', 'a', 'c', 'd']
['b', 'a', 'd', 'c']
['b', 'c', 'a', 'd']
['b', 'c', 'd', 'a']
['b', 'd', 'a', 'c']
['b', 'd', 'c', 'a']
['c', 'a', 'b', 'd']
['c', 'a', 'd', 'b']
['c', 'b', 'a', 'd']
['c', 'b', 'd', 'a']
['c', 'd', 'a', 'b']
['c', 'd', 'b', 'a']
['d', 'a', 'b', 'c']
['d', 'a', 'c', 'b']
['d', 'b', 'a', 'c']
['d', 'b', 'c', 'a']
['d', 'c', 'a', 'b']
['d', 'c', 'b', 'a']

功能性风格

def addperm(x,l):
    return [ l[0:i] + [x] + l[i:]  for i in range(len(l)+1) ]

def perm(l):
    if len(l) == 0:
        return [[]]
    return [x for y in perm(l[1:]) for x in addperm(l[0],y) ]

print perm([ i for i in range(3)])

结果:

[[0, 1, 2], [1, 0, 2], [1, 2, 0], [0, 2, 1], [2, 0, 1], [2, 1, 0]]

用递归求解,遍历元素,取第i个元素,然后问自己:“其余项目的排列是什么”,直到没有更多的元素。

我在这里解释了解决方案:https://www.youtube.com/watch?v=_7GE7psS2b4

class Solution:
    def permute(self,nums:List[int])->List[List[int]]:
        res=[]
        def dfs(nums,path):
            if len(nums)==0:
                res.append(path)
            for i in range(len(nums)):
                dfs(nums[:i]+nums[i+1:],path+[nums[i]])
        dfs(nums,[])
        return res

为了节省您可能的搜索和实验时间,下面是Python中的非递归置换解决方案,它也适用于Numba(从0.41版开始):

@numba.njit()
def permutations(A, k):
    r = [[i for i in range(0)]]
    for i in range(k):
        r = [[a] + b for a in A for b in r if (a in b)==False]
    return r
permutations([1,2,3],3)
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

要给人留下绩效印象:

%timeit permutations(np.arange(5),5)

243 µs ± 11.1 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)
time: 406 ms

%timeit list(itertools.permutations(np.arange(5),5))
15.9 µs ± 8.61 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
time: 12.9 s

因此,只有在必须从njit函数调用它时才使用此版本,否则更倾向于itertools实现。

def pzip(c, seq):
    result = []
    for item in seq:
        for i in range(len(item)+1):
            result.append(item[i:]+c+item[:i])
    return result


def perm(line):
    seq = [c for c in line]
    if len(seq) <=1 :
        return seq
    else:
        return pzip(seq[0], perm(seq[1:]))