我试图读取一个大的csv文件(aprox。6 GB)在熊猫和我得到一个内存错误:

MemoryError                               Traceback (most recent call last)
<ipython-input-58-67a72687871b> in <module>()
----> 1 data=pd.read_csv('aphro.csv',sep=';')

...

MemoryError: 

有什么帮助吗?


当前回答

除了上面的答案,对于那些想要处理CSV然后导出到CSV、parquet或SQL的人来说,d6tstack是另一个不错的选择。您可以加载多个文件,它处理数据模式更改(添加/删除列)。核心支持已经被剔除。

def apply(dfg):
    # do stuff
    return dfg

c = d6tstack.combine_csv.CombinerCSV([bigfile.csv], apply_after_read=apply, sep=',', chunksize=1e6)

# or
c = d6tstack.combine_csv.CombinerCSV(glob.glob('*.csv'), apply_after_read=apply, chunksize=1e6)

# output to various formats, automatically chunked to reduce memory consumption
c.to_csv_combine(filename='out.csv')
c.to_parquet_combine(filename='out.pq')
c.to_psql_combine('postgresql+psycopg2://usr:pwd@localhost/db', 'tablename') # fast for postgres
c.to_mysql_combine('mysql+mysqlconnector://usr:pwd@localhost/db', 'tablename') # fast for mysql
c.to_sql_combine('postgresql+psycopg2://usr:pwd@localhost/db', 'tablename') # slow but flexible

其他回答

对于大数据,我建议你使用"dask"库,例如:

# Dataframes implement the Pandas API
import dask.dataframe as dd
df = dd.read_csv('s3://.../2018-*-*.csv')

你可以在这里阅读更多的文档。

另一个很好的选择是使用modin,因为所有的功能都与pandas相同,但它利用了分布式数据框架库,如dask。

在我的项目中,另一个高级库是数据表。

# Datatable python library
import datatable as dt
df = dt.fread("s3://.../2018-*-*.csv")

我是这样说的:

chunks=pd.read_table('aphro.csv',chunksize=1000000,sep=';',\
       names=['lat','long','rf','date','slno'],index_col='slno',\
       header=None,parse_dates=['date'])

df=pd.DataFrame()
%time df=pd.concat(chunk.groupby(['lat','long',chunk['date'].map(lambda x: x.year)])['rf'].agg(['sum']) for chunk in chunks)

在使用chunksize选项之前,如果你想确定你想要在@unutbu提到的分块for循环中写入的进程函数,你可以简单地使用nrows选项。

small_df = pd.read_csv(filename, nrows=100)

一旦确定流程块准备好了,就可以将其放入整个数据帧的分块for循环中。

您可以将数据读入为块,并将每个块保存为pickle。

import pandas as pd 
import pickle

in_path = "" #Path where the large file is
out_path = "" #Path to save the pickle files to
chunk_size = 400000 #size of chunks relies on your available memory
separator = "~"

reader = pd.read_csv(in_path,sep=separator,chunksize=chunk_size, 
                    low_memory=False)    


for i, chunk in enumerate(reader):
    out_file = out_path + "/data_{}.pkl".format(i+1)
    with open(out_file, "wb") as f:
        pickle.dump(chunk,f,pickle.HIGHEST_PROTOCOL)

在下一步中,读入pickle并将每个pickle附加到所需的数据框架中。

import glob
pickle_path = "" #Same Path as out_path i.e. where the pickle files are

data_p_files=[]
for name in glob.glob(pickle_path + "/data_*.pkl"):
   data_p_files.append(name)


df = pd.DataFrame([])
for i in range(len(data_p_files)):
    df = df.append(pd.read_pickle(data_p_files[i]),ignore_index=True)

解决方案1:

使用大数据的熊猫

解决方案2:

TextFileReader = pd.read_csv(path, chunksize=1000)  # the number of rows per chunk

dfList = []
for df in TextFileReader:
    dfList.append(df)

df = pd.concat(dfList,sort=False)