我已经设置了gunicorn与3个工人,30个工人连接和使用eventlet工人类。它被设置在Nginx后面。每请求几次,我就会在日志里看到这个。

[ERROR] gunicorn.error: WORKER TIMEOUT (pid:23475)
None
[INFO] gunicorn.error: Booting worker with pid: 23514

为什么会这样?我怎样才能知道哪里出了问题呢?


当前回答

我有非常相似的问题,我也尝试使用“运行服务器”,看看我是否能找到任何东西,但我所拥有的只是一个消息杀死

所以我认为这可能是资源问题,我继续给实例更多的RAM,它工作了。

其他回答

我在Docker中也遇到了同样的问题。

在Docker中,我保持训练过的LightGBM模型+ Flask服务请求。作为HTTP服务器,我使用gunicorn 19.9.0。当我在我的Mac笔记本电脑上本地运行我的代码时,一切都很完美,但当我在Docker中运行应用程序时,我的POST JSON请求冻结了一段时间,然后gunicorn工人已经失败了[CRITICAL]工人超时异常。

我尝试了大量不同的方法,但唯一解决我的问题的是添加worker_class=gthread。

以下是我的完整配置:

import multiprocessing

workers = multiprocessing.cpu_count() * 2 + 1
accesslog = "-" # STDOUT
access_log_format = '%(h)s %(l)s %(u)s %(t)s "%(r)s" %(s)s %(b)s "%(q)s" "%(D)s"'
bind = "0.0.0.0:5000"
keepalive = 120
timeout = 120
worker_class = "gthread"
threads = 3

你需要使用另一个worker类型类,比如gevent或tornado。 第一个解释:

如果您预计应用程序代码在请求处理期间可能需要暂停较长时间,您可能还需要安装Eventlet或Gevent

第二点:

默认的同步工作线程假定您的应用程序在CPU和网络带宽方面受到资源限制。通常这意味着您的应用程序不应该执行任何花费未定义时间的操作。例如,对互联网的请求就符合这个标准。在某些时候,外部网络会出现故障,客户端会堆积在您的服务器上。

这招对我很管用:

gunicorn app:app -b :8080 --timeout 120 --workers=3 --threads=3 --worker-connections=1000

如果你有eventlet,添加:

--worker-class=eventlet

如果你有gevent添加:

--worker-class=gevent

关于在Azure应用服务(Linux应用)上运行Flask Apps的Microsoft Azure官方文档声明超时时间为600

gunicorn --bind=0.0.0.0 --timeout 600 application:app

https://learn.microsoft.com/en-us/azure/app-service/configure-language-python#flask-app

弗兰克的回答给我指明了正确的方向。我有一个数字海洋液滴访问管理数字海洋Postgresql数据库。我所需要做的就是将我的液滴添加到数据库的“可信来源”。

(在DO控制台点击数据库,然后点击设置。编辑Trusted Sources,选择液滴名称(在可编辑区域点击,会提示)。