我已经设置了gunicorn与3个工人,30个工人连接和使用eventlet工人类。它被设置在Nginx后面。每请求几次,我就会在日志里看到这个。
[ERROR] gunicorn.error: WORKER TIMEOUT (pid:23475)
None
[INFO] gunicorn.error: Booting worker with pid: 23514
为什么会这样?我怎样才能知道哪里出了问题呢?
我已经设置了gunicorn与3个工人,30个工人连接和使用eventlet工人类。它被设置在Nginx后面。每请求几次,我就会在日志里看到这个。
[ERROR] gunicorn.error: WORKER TIMEOUT (pid:23475)
None
[INFO] gunicorn.error: Booting worker with pid: 23514
为什么会这样?我怎样才能知道哪里出了问题呢?
当前回答
关于在Azure应用服务(Linux应用)上运行Flask Apps的Microsoft Azure官方文档声明超时时间为600
gunicorn --bind=0.0.0.0 --timeout 600 application:app
https://learn.microsoft.com/en-us/azure/app-service/configure-language-python#flask-app
其他回答
使用——log-level debug运行Gunicorn。
它应该会给你一个应用程序堆栈跟踪。
会是这样吗? http://docs.gunicorn.org/en/latest/settings.html#timeout
其他的可能是你的回复时间太长或者被困在等待中。
检查你的工人没有被健康检查杀死。长请求可能会阻塞健康检查请求,worker会被平台杀死,因为平台认为worker没有响应。
例如,如果您有一个25秒长的请求,并且活动检查被配置为每10秒命中同一服务中的不同端点,1秒超时,并重试3次,这就给出了10+1*3 ~ 13秒,您可以看到它会触发一些时间,但并不总是如此。
如果是这种情况,解决方案是重新配置您的活动检查(或您的平台使用的任何健康检查机制),以便它可以等待您的典型请求完成。或者允许更多的线程——这样可以确保健康检查不会阻塞足够长的时间来触发worker kill。
你可以看到,增加更多的工人可能有助于(或隐藏)这个问题。
这个端点是否花费了太多时间?
也许你使用的flask没有异步支持,所以每个请求都会阻塞调用。要创建异步支持而不让make变得困难,可以添加gevent worker。
使用gevent,一个新的调用将产生一个新的线程,你的应用程序将能够接收更多的请求
pip install gevent
gunicon .... --worker-class gevent
你需要使用另一个worker类型类,比如gevent或tornado。 第一个解释:
如果您预计应用程序代码在请求处理期间可能需要暂停较长时间,您可能还需要安装Eventlet或Gevent
第二点:
默认的同步工作线程假定您的应用程序在CPU和网络带宽方面受到资源限制。通常这意味着您的应用程序不应该执行任何花费未定义时间的操作。例如,对互联网的请求就符合这个标准。在某些时候,外部网络会出现故障,客户端会堆积在您的服务器上。