我已经设置了gunicorn与3个工人,30个工人连接和使用eventlet工人类。它被设置在Nginx后面。每请求几次,我就会在日志里看到这个。

[ERROR] gunicorn.error: WORKER TIMEOUT (pid:23475)
None
[INFO] gunicorn.error: Booting worker with pid: 23514

为什么会这样?我怎样才能知道哪里出了问题呢?


当前回答

对我来说,这是因为我忘记在数据库服务器上为我的Django设置防火墙规则。

其他回答

使用——log-level debug运行Gunicorn。

它应该会给你一个应用程序堆栈跟踪。

我们在使用Django+nginx+gunicorn时也遇到了同样的问题。从Gunicorn文档中,我们配置了优雅的超时,几乎没有什么不同。

经过一些测试,我们找到了解决方案,要配置的参数是:timeout(并且不是优雅超时)。它走得像时钟一样快。

所以,做:

1)打开gunicorn配置文件

2)将TIMEOUT设置为您需要的任何值-以秒为单位

NUM_WORKERS=3
TIMEOUT=120

exec gunicorn ${DJANGO_WSGI_MODULE}:application \
--name $NAME \
--workers $NUM_WORKERS \
--timeout $TIMEOUT \
--log-level=debug \
--bind=127.0.0.1:9000 \
--pid=$PIDFILE

对我来说,最简单的方法是在你的app.py存在的文件夹中创建一个新的config.py文件,并在其中放入超时和所有你想要的特殊配置:

timeout = 999

然后在指向这个配置文件的同时运行服务器

gunicorn -c config.py --bind 0.0.0.0:5000 wsgi:app

注意,要使这条语句工作,还需要将wsgi.py放在具有以下内容的同一目录中

from myproject import app

if __name__ == "__main__":
    app.run()

干杯!

我在Docker中也遇到了同样的问题。

在Docker中,我保持训练过的LightGBM模型+ Flask服务请求。作为HTTP服务器,我使用gunicorn 19.9.0。当我在我的Mac笔记本电脑上本地运行我的代码时,一切都很完美,但当我在Docker中运行应用程序时,我的POST JSON请求冻结了一段时间,然后gunicorn工人已经失败了[CRITICAL]工人超时异常。

我尝试了大量不同的方法,但唯一解决我的问题的是添加worker_class=gthread。

以下是我的完整配置:

import multiprocessing

workers = multiprocessing.cpu_count() * 2 + 1
accesslog = "-" # STDOUT
access_log_format = '%(h)s %(l)s %(u)s %(t)s "%(r)s" %(s)s %(b)s "%(q)s" "%(D)s"'
bind = "0.0.0.0:5000"
keepalive = 120
timeout = 120
worker_class = "gthread"
threads = 3

WORKER TIMEOUT表示应用程序不能在规定的时间内响应请求。你可以使用gunicorn超时设置来设置。一些应用程序需要比另一个应用程序更多的时间来响应。

另一个可能影响这一点的因素是员工类型的选择

The default synchronous workers assume that your application is resource-bound in terms of CPU and network bandwidth. Generally this means that your application shouldn’t do anything that takes an undefined amount of time. An example of something that takes an undefined amount of time is a request to the internet. At some point the external network will fail in such a way that clients will pile up on your servers. So, in this sense, any web application which makes outgoing requests to APIs will benefit from an asynchronous worker.

当我遇到与您相同的问题时(我试图使用Docker Swarm部署我的应用程序),我尝试增加超时并使用另一种类型的工人类。但都失败了。

然后我突然意识到我的资源限制太低在我的撰写文件中的服务。在我的例子中,这就是减慢应用程序的原因

deploy:
  replicas: 5
  resources:
    limits:
      cpus: "0.1"
      memory: 50M
  restart_policy:
    condition: on-failure

所以我建议你先检查一下是什么减慢了你的应用程序