我试图写一个熊猫数据帧(或可以使用numpy数组)到mysql数据库使用MysqlDB。MysqlDB似乎不理解'nan',我的数据库抛出一个错误,说nan不在字段列表中。我需要找到一种方法将“nan”转换为NoneType。
什么好主意吗?
我试图写一个熊猫数据帧(或可以使用numpy数组)到mysql数据库使用MysqlDB。MysqlDB似乎不理解'nan',我的数据库抛出一个错误,说nan不在字段列表中。我需要找到一种方法将“nan”转换为NoneType。
什么好主意吗?
当前回答
很老了,但我偶然发现了同样的问题。 试着这样做:
df['col_replaced'] = df['col_with_npnans'].apply(lambda x: None if np.isnan(x) else x)
其他回答
很老了,但我偶然发现了同样的问题。 试着这样做:
df['col_replaced'] = df['col_with_npnans'].apply(lambda x: None if np.isnan(x) else x)
您是否有代码块需要检查?
使用.loc, pandas可以基于逻辑条件(过滤)访问记录并对它们执行操作(当使用=时)。将.loc掩码设置为某个值将会就地改变返回数组(所以这里要小心;我建议在使用代码块之前测试一个df副本)。
df.loc[df['SomeColumn'].isna(), 'SomeColumn'] = None
外层的函数是df。loc[row_label, column_label] =无。我们将使用.isna()方法为row_label使用布尔掩码,在SomeColumn列中查找“NoneType”值。
我们将使用.isna()方法返回列SomeColumn中的行/记录布尔数组,作为我们的row_label: df['SomeColumn'].isna()。它将分离SomeColumn中含有熊猫用.isna()方法检查的任何'NoneType'项的所有行。
我们将在屏蔽row_label的数据帧时使用column_label,并在标识我们想要用于.loc掩码的列时使用column_label。
最后,我们将.loc掩码设置为None,因此返回的行/记录将根据掩码索引更改为None。
下面是关于.loc和.isna()的pandas文档链接。
引用: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.loc.html https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.isna.html
这招对我很管用:
df = df.fillna(0)
另一个补充:在替换倍数和将列的类型从object转换回float时要小心。如果你想确保你的None不会翻回np。NaN使用@andy-hayden的建议使用pd.where。 说明替换仍然可能出错:
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: df = pd.DataFrame({"a": [1, np.NAN, np.inf]})
In [4]: df
Out[4]:
a
0 1.0
1 NaN
2 inf
In [5]: df.replace({np.NAN: None})
Out[5]:
a
0 1
1 None
2 inf
In [6]: df.replace({np.NAN: None, np.inf: None})
Out[6]:
a
0 1.0
1 NaN
2 NaN
In [7]: df.where((pd.notnull(df)), None).replace({np.inf: None})
Out[7]:
a
0 1.0
1 NaN
2 NaN
现在对我来说,徒手做是唯一可行的方法。
@rodney cox的回答几乎在所有情况下都对我有效。
下面的代码将所有列设置为对象数据类型,然后将任何空值替换为None。将列数据类型设置为object非常重要,因为这样可以防止pandas进一步更改类型。
for col in df.columns:
df[col] = df[col].astype(object)
df.loc[df[col].isnull(), col] = None
警告:此解决方案效率不高,因为它处理的列可能没有np。nan值。