我试图写一个熊猫数据帧(或可以使用numpy数组)到mysql数据库使用MysqlDB。MysqlDB似乎不理解'nan',我的数据库抛出一个错误,说nan不在字段列表中。我需要找到一种方法将“nan”转换为NoneType。
什么好主意吗?
我试图写一个熊猫数据帧(或可以使用numpy数组)到mysql数据库使用MysqlDB。MysqlDB似乎不理解'nan',我的数据库抛出一个错误,说nan不在字段列表中。我需要找到一种方法将“nan”转换为NoneType。
什么好主意吗?
当前回答
这招对我很管用:
df = df.fillna(0)
其他回答
令人惊讶的是,之前的答案都不适合我,所以我不得不对每一列都这样做。
for column in df.columns:
df[column] = df[column].where(pd.notnull(df[column]), None)
你可以在numpy数组中用None替换nan:
>>> x = np.array([1, np.nan, 3])
>>> y = np.where(np.isnan(x), None, x)
>>> print y
[1.0 None 3.0]
>>> print type(y[1])
<type 'NoneType'>
@bogatron是对的,你可以用where,值得注意的是,你可以在熊猫的原生环境中这样做:
df1 = df.where(pd.notnull(df), None)
注意:这将所有列的dtype更改为object。
例子:
In [1]: df = pd.DataFrame([1, np.nan])
In [2]: df
Out[2]:
0
0 1
1 NaN
In [3]: df1 = df.where(pd.notnull(df), None)
In [4]: df1
Out[4]:
0
0 1
1 None
注意:你不能做的是重铸DataFrames dtype以允许所有的数据类型,使用astype,然后使用DataFrame fillna方法:
df1 = df.astype(object).replace(np.nan, 'None')
不幸的是,这和使用replace都不能与None一起工作,看到这个(关闭)问题。
顺便说一句,值得注意的是,对于大多数用例,您不需要将NaN替换为None,请参阅这个关于pandas中NaN和None之间差异的问题。
然而,在这个特定的情况下,你似乎是这样的(至少在回答这个问题的时候)。
这招对我很管用:
df = df.fillna(0)
在熊猫更新到1.3.2后,我发现推荐的答案和替代建议都不适合我的应用程序,我用蛮力方法解决了安全问题:
buf = df.to_json(orient='records')
recs = json.loads(buf)