我有一个由多重yield返回的生成器对象。准备调用这个生成器是相当耗时的操作。这就是为什么我想重复使用发电机几次。
y = FunctionWithYield()
for x in y: print(x)
#here must be something to reset 'y'
for x in y: print(x)
当然,我正在考虑将内容复制到简单的列表中。有办法重置我的发电机吗?
请参见:如何提前查看Python生成器中的一个元素?
我有一个由多重yield返回的生成器对象。准备调用这个生成器是相当耗时的操作。这就是为什么我想重复使用发电机几次。
y = FunctionWithYield()
for x in y: print(x)
#here must be something to reset 'y'
for x in y: print(x)
当然,我正在考虑将内容复制到简单的列表中。有办法重置我的发电机吗?
请参见:如何提前查看Python生成器中的一个元素?
当前回答
好吧,你说你想多次调用一个生成器,但初始化是昂贵的…像这样的东西怎么样?
class InitializedFunctionWithYield(object):
def __init__(self):
# do expensive initialization
self.start = 5
def __call__(self, *args, **kwargs):
# do cheap iteration
for i in xrange(5):
yield self.start + i
y = InitializedFunctionWithYield()
for x in y():
print x
for x in y():
print x
或者,你也可以创建自己的类,遵循迭代器协议,并定义某种“reset”函数。
class MyIterator(object):
def __init__(self):
self.reset()
def reset(self):
self.i = 5
def __iter__(self):
return self
def next(self):
i = self.i
if i > 0:
self.i -= 1
return i
else:
raise StopIteration()
my_iterator = MyIterator()
for x in my_iterator:
print x
print 'resetting...'
my_iterator.reset()
for x in my_iterator:
print x
https://docs.python.org/2/library/stdtypes.html#iterator-types http://anandology.com/python-practice-book/iterators.html
其他回答
您可以定义一个返回生成器的函数
def f():
def FunctionWithYield(generator_args):
code here...
return FunctionWithYield
现在你可以想做多少次就做多少次:
for x in f()(generator_args): print(x)
for x in f()(generator_args): print(x)
这对我来说是工作。
csv_rows = my_generator()
for _ in range(10):
for row in csv_rows:
print(row)
csv_rows = my_generator()
可能最简单的解决方案是将昂贵的部分包装在一个对象中,并将其传递给生成器:
data = ExpensiveSetup()
for x in FunctionWithYield(data): pass
for x in FunctionWithYield(data): pass
这样,就可以缓存昂贵的计算。
如果您可以同时将所有结果保存在RAM中,那么可以使用list()将生成器的结果物化到一个普通列表中并使用该列表。
来自tee的官方文件:
通常,如果一个迭代器使用了前面的大部分或所有数据 另一个迭代器启动时,使用list()比tee()更快。
所以在你的情况下最好使用list(iterable)。
>>> def gen():
... def init():
... return 0
... i = init()
... while True:
... val = (yield i)
... if val=='restart':
... i = init()
... else:
... i += 1
>>> g = gen()
>>> g.next()
0
>>> g.next()
1
>>> g.next()
2
>>> g.next()
3
>>> g.send('restart')
0
>>> g.next()
1
>>> g.next()
2