我有一个由多重yield返回的生成器对象。准备调用这个生成器是相当耗时的操作。这就是为什么我想重复使用发电机几次。

y = FunctionWithYield()
for x in y: print(x)
#here must be something to reset 'y'
for x in y: print(x)

当然,我正在考虑将内容复制到简单的列表中。有办法重置我的发电机吗?


请参见:如何提前查看Python生成器中的一个元素?


当前回答

可能最简单的解决方案是将昂贵的部分包装在一个对象中,并将其传递给生成器:

data = ExpensiveSetup()
for x in FunctionWithYield(data): pass
for x in FunctionWithYield(data): pass

这样,就可以缓存昂贵的计算。

如果您可以同时将所有结果保存在RAM中,那么可以使用list()将生成器的结果物化到一个普通列表中并使用该列表。

其他回答

现在可以使用more_itertools。Seekable(第三方工具),允许重置迭代器。

通过> pip Install more_itertools安装

import more_itertools as mit


y = mit.seekable(FunctionWithYield())
for x in y:
    print(x)

y.seek(0)                                              # reset iterator
for x in y:
    print(x)

注意:内存消耗会随着迭代器的增加而增加,所以要警惕大型迭代对象。

好吧,你说你想多次调用一个生成器,但初始化是昂贵的…像这样的东西怎么样?

class InitializedFunctionWithYield(object):
    def __init__(self):
        # do expensive initialization
        self.start = 5

    def __call__(self, *args, **kwargs):
        # do cheap iteration
        for i in xrange(5):
            yield self.start + i

y = InitializedFunctionWithYield()

for x in y():
    print x

for x in y():
    print x

或者,你也可以创建自己的类,遵循迭代器协议,并定义某种“reset”函数。

class MyIterator(object):
    def __init__(self):
        self.reset()

    def reset(self):
        self.i = 5

    def __iter__(self):
        return self

    def next(self):
        i = self.i
        if i > 0:
            self.i -= 1
            return i
        else:
            raise StopIteration()

my_iterator = MyIterator()

for x in my_iterator:
    print x

print 'resetting...'
my_iterator.reset()

for x in my_iterator:
    print x

https://docs.python.org/2/library/stdtypes.html#iterator-types http://anandology.com/python-practice-book/iterators.html

您可以定义一个返回生成器的函数

def f():
  def FunctionWithYield(generator_args):
    code here...

  return FunctionWithYield

现在你可以想做多少次就做多少次:

for x in f()(generator_args): print(x)
for x in f()(generator_args): print(x)

如果希望使用预定义的参数集多次重用此生成器,可以使用functools.partial。

from functools import partial
func_with_yield = partial(FunctionWithYield, arg0, arg1)

for i in range(100):
    for x in func_with_yield():
        print(x)

这将把生成器函数包装到另一个函数中,因此每次调用func_with_yield()时,它都会创建相同的生成器函数。

如果GrzegorzOledzki的答案还不够,那么可以使用send()来实现目标。有关增强生成器和yield表达式的更多详细信息,请参阅PEP-0342。

更新:参见itertools.tee()。它涉及到上面提到的内存与处理之间的一些权衡,但它可能比仅将生成器结果存储在列表中节省一些内存;这取决于你如何使用发电机。