我有一个由多重yield返回的生成器对象。准备调用这个生成器是相当耗时的操作。这就是为什么我想重复使用发电机几次。

y = FunctionWithYield()
for x in y: print(x)
#here must be something to reset 'y'
for x in y: print(x)

当然,我正在考虑将内容复制到简单的列表中。有办法重置我的发电机吗?


请参见:如何提前查看Python生成器中的一个元素?


当前回答

我不知道你说的昂贵的准备是什么意思,但我猜你确实有

data = ... # Expensive computation
y = FunctionWithYield(data)
for x in y: print(x)
#here must be something to reset 'y'
# this is expensive - data = ... # Expensive computation
# y = FunctionWithYield(data)
for x in y: print(x)

如果是这样的话,为什么不重用数据呢?

其他回答

>>> def gen():
...     def init():
...         return 0
...     i = init()
...     while True:
...         val = (yield i)
...         if val=='restart':
...             i = init()
...         else:
...             i += 1

>>> g = gen()
>>> g.next()
0
>>> g.next()
1
>>> g.next()
2
>>> g.next()
3
>>> g.send('restart')
0
>>> g.next()
1
>>> g.next()
2

现在可以使用more_itertools。Seekable(第三方工具),允许重置迭代器。

通过> pip Install more_itertools安装

import more_itertools as mit


y = mit.seekable(FunctionWithYield())
for x in y:
    print(x)

y.seek(0)                                              # reset iterator
for x in y:
    print(x)

注意:内存消耗会随着迭代器的增加而增加,所以要警惕大型迭代对象。

如果希望使用预定义的参数集多次重用此生成器,可以使用functools.partial。

from functools import partial
func_with_yield = partial(FunctionWithYield, arg0, arg1)

for i in range(100):
    for x in func_with_yield():
        print(x)

这将把生成器函数包装到另一个函数中,因此每次调用func_with_yield()时,它都会创建相同的生成器函数。

另一种选择是使用itertools.tee()函数创建生成器的第二个版本:

import itertools
y = FunctionWithYield()
y, y_backup = itertools.tee(y)
for x in y:
    print(x)
for x in y_backup:
    print(x)

从内存使用的角度来看,如果原始迭代可能不处理所有的项,这可能是有益的。

可能最简单的解决方案是将昂贵的部分包装在一个对象中,并将其传递给生成器:

data = ExpensiveSetup()
for x in FunctionWithYield(data): pass
for x in FunctionWithYield(data): pass

这样,就可以缓存昂贵的计算。

如果您可以同时将所有结果保存在RAM中,那么可以使用list()将生成器的结果物化到一个普通列表中并使用该列表。