我有一个名为“mydata”的数据帧,它看起来像这样:

   A  B  C   D 
1. 5  4  4   4 
2. 5  4  4   4 
3. 5  4  4   4 
4. 5  4  4   4 
5. 5  4  4   4 
6. 5  4  4   4 
7. 5  4  4   4 

我想删除第2行,第4行,第6行。例如,像这样:

   A  B  C   D
1. 5  4  4  4 
3. 5  4  4  4 
5. 5  4  4  4 
7. 5  4  4  4 

当前回答

按行号删除的问题

对于快速和肮脏的分析,您可以根据顶部的答案通过数字删除data.frame的行。也就是说,

newdata <- myData[-c(2, 4, 6), ] 

但是,如果试图编写健壮的数据分析脚本,通常应该避免按数字位置删除行。这是因为数据中的行顺序将来可能会改变。data.frame或数据库表的一般原则是行顺序不重要。如果顺序很重要,则应该将其编码在data.frame中的一个实际变量中。

例如,假设您导入了一个数据集,并在检查了数据并确定了要删除的行的行号之后,按数字位置删除了行。但是,在稍后的某个时刻,您将进入原始数据并查看并重新排序数据。您的行删除代码现在将删除错误的行,更糟糕的是,您不太可能得到任何警告您已经发生这种情况的错误。

更好的战略

更好的策略是根据行的实质性和稳定属性删除行。例如,如果您有一个唯一标识每种情况的id列变量,您可以使用它。

newdata <- myData[ !(myData$id %in% c(2,4,6)), ]

其他时候,您将有一个可以指定的正式排除标准,并且您可以使用R中的许多子集工具之一来基于该规则排除情况。

其他回答

关键思想是,你把想要删除的行组成一个集合,并保留这个集合的补项。

在R中,集合的补由'-'操作符给出。

假设data。frame是myData:

myData[-c(2, 4, 6), ]   # notice the -

当然,如果您想完全删除这些行,不要忘记“重新分配”myData——否则,R只打印结果。

myData <- myData[-c(2, 4, 6), ]

在数据帧中创建id列或使用任何列名来标识行。使用索引删除是不公平的。

使用子集函数创建新的框架。

updated_myData <- subset(myData, id!= 6)
print (updated_myData)

updated_myData <- subset(myData, id %in% c(1, 3, 5, 7))
print (updated_myData)

你也可以使用所谓的布尔向量,也就是逻辑:

row_to_keep = c(TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE)
myData = myData[row_to_keep,]

注意!运算符充当NOT,即!TRUE == FALSE:

myData = myData[!row_to_keep,]

与@mrwab的答案相比,这似乎有点麻烦(+1 btw:)),但逻辑向量可以动态生成,例如,当列值超过某个值时:

myData = myData[myData$A > 4,]
myData = myData[!myData$A > 4,] # equal to myData[myData$A <= 4,]

你可以把一个布尔向量转换成一个索引向量:

row_to_keep = which(myData$A > 4)

最后,一个非常巧妙的技巧是,你不仅可以将这种子集用于提取,还可以用于赋值:

myData$A[myData$A > 4,] <- NA

其中列A被分配为NA(不是一个数字),其中A超过4。

从员工中删除Dan。data -不需要管理新的data.frame。

employee.data <- subset(employee.data, name!="Dan")

按行号删除的问题

对于快速和肮脏的分析,您可以根据顶部的答案通过数字删除data.frame的行。也就是说,

newdata <- myData[-c(2, 4, 6), ] 

但是,如果试图编写健壮的数据分析脚本,通常应该避免按数字位置删除行。这是因为数据中的行顺序将来可能会改变。data.frame或数据库表的一般原则是行顺序不重要。如果顺序很重要,则应该将其编码在data.frame中的一个实际变量中。

例如,假设您导入了一个数据集,并在检查了数据并确定了要删除的行的行号之后,按数字位置删除了行。但是,在稍后的某个时刻,您将进入原始数据并查看并重新排序数据。您的行删除代码现在将删除错误的行,更糟糕的是,您不太可能得到任何警告您已经发生这种情况的错误。

更好的战略

更好的策略是根据行的实质性和稳定属性删除行。例如,如果您有一个唯一标识每种情况的id列变量,您可以使用它。

newdata <- myData[ !(myData$id %in% c(2,4,6)), ]

其他时候,您将有一个可以指定的正式排除标准,并且您可以使用R中的许多子集工具之一来基于该规则排除情况。