这可能是一个简单的问题,但我不知道该怎么做。假设有两个变量。

a = 2
b = 3

我想从这个构建一个数据框架:

df2 = pd.DataFrame({'A':a,'B':b})

这会产生一个错误:

ValueError:如果使用所有标量值,则必须传递一个索引

我也试过这个:

df2 = (pd.DataFrame({'a':a,'b':b})).reset_index()

这将给出相同的错误消息。


当前回答

我对numpy数组也有同样的问题,解决方案是将它们压平:

data = {
    'b': array1.flatten(),
    'a': array2.flatten(),
}

df = pd.DataFrame(data)

其他回答

如果你有一个字典,你可以用下面这行代码把它转换成pandas数据帧:

pd.DataFrame({"key": d.keys(), "value": d.values()})

我对numpy数组也有同样的问题,解决方案是将它们压平:

data = {
    'b': array1.flatten(),
    'a': array2.flatten(),
}

df = pd.DataFrame(data)

将字典转换为数据帧

col_dict_df = pd.Series(col_dict).to_frame('new_col').reset_index()

为列指定新名称

col_dict_df.columns = ['col1', 'col2']

你也可以使用pd.DataFrame.from_records,这在你已经有字典的情况下更方便:

df = pd.DataFrame.from_records([{ 'A':a,'B':b }])

你也可以设置索引,如果你想,通过:

df = pd.DataFrame.from_records([{ 'A':a,'B':b }], index='A')

你可以试试:

df2 = pd.DataFrame.from_dict({'a':a,'b':b}, orient = 'index')

来自'orient'参数的文档:如果传递的dict的键应该是结果DataFrame的列,则传递' columns '(默认)。否则,如果键应该是行,则传递' index '。