这可能是一个简单的问题,但我不知道该怎么做。假设有两个变量。

a = 2
b = 3

我想从这个构建一个数据框架:

df2 = pd.DataFrame({'A':a,'B':b})

这会产生一个错误:

ValueError:如果使用所有标量值,则必须传递一个索引

我也试过这个:

df2 = (pd.DataFrame({'a':a,'b':b})).reset_index()

这将给出相同的错误消息。


当前回答

我对numpy数组也有同样的问题,解决方案是将它们压平:

data = {
    'b': array1.flatten(),
    'a': array2.flatten(),
}

df = pd.DataFrame(data)

其他回答

import pandas as pd
 a=2
 b=3
dict = {'A': a, 'B': b}

pd.DataFrame(pd.Series(dict)).T  
# *T :transforms the dataframe*

   Result:
    A   B
0   2   3

你可以试着把你的字典包装成一个列表:

my_dict = {'A':1,'B':2}
pd.DataFrame([my_dict])
   A  B
0  1  2

这是因为DataFrame有两个直观的维度——列和行。

您只是使用字典键指定列。

如果您只想指定一维数据,请使用Series!

另一个选项是使用Dictionary Comprehension动态地将标量转换为列表:

df = pd.DataFrame(data={k: [v] for k, v in mydict.items()})

表达式{…}创建一个新的字典,其值是一个包含1个元素的列表。例如:

In [20]: mydict
Out[20]: {'a': 1, 'b': 2}

In [21]: mydict2 = { k: [v] for k, v in mydict.items()}

In [22]: mydict2
Out[22]: {'a': [1], 'b': [2]}

也许Series会提供你需要的所有函数:

pd.Series({'A':a,'B':b})

DataFrame可以被认为是一个系列的集合,因此你可以:

将多个Series连接到一个数据帧中(如此处所述) 向现有数据帧中添加一个Series变量(示例如下)