这可能是一个简单的问题,但我不知道该怎么做。假设有两个变量。

a = 2
b = 3

我想从这个构建一个数据框架:

df2 = pd.DataFrame({'A':a,'B':b})

这会产生一个错误:

ValueError:如果使用所有标量值,则必须传递一个索引

我也试过这个:

df2 = (pd.DataFrame({'a':a,'b':b})).reset_index()

这将给出相同的错误消息。


当前回答

你需要提供可迭代对象作为Pandas DataFrame列的值:

df2 = pd.DataFrame({'A':[a],'B':[b]})

其他回答

只要把字典放在一个列表上:

a = 2
b = 3
df2 = pd.DataFrame([{'A':a,'B':b}])

错误消息表示,如果您传递标量值,则必须传递一个索引。所以你可以不为列使用标量值——例如使用一个列表:

>>> df = pd.DataFrame({'A': [a], 'B': [b]})
>>> df
   A  B
0  2  3

或者使用标量值并传递一个索引:

>>> df = pd.DataFrame({'A': a, 'B': b}, index=[0])
>>> df
   A  B
0  2  3

如果你想转换一个标量字典,你必须包含一个索引:

import pandas as pd

alphabets = {'A': 'a', 'B': 'b'}
index = [0]
alphabets_df = pd.DataFrame(alphabets, index=index)
print(alphabets_df)

虽然索引对于列表字典不需要,但同样的思想可以扩展到列表字典:

planets = {'planet': ['earth', 'mars', 'jupiter'], 'length_of_day': ['1', '1.03', '0.414']}
index = [0, 1, 2]
planets_df = pd.DataFrame(planets, index=index)
print(planets_df)

当然,对于列表字典,你可以在没有索引的情况下构建数据框架:

planets_df = pd.DataFrame(planets)
print(planets_df)

另一个选项是使用Dictionary Comprehension动态地将标量转换为列表:

df = pd.DataFrame(data={k: [v] for k, v in mydict.items()})

表达式{…}创建一个新的字典,其值是一个包含1个元素的列表。例如:

In [20]: mydict
Out[20]: {'a': 1, 'b': 2}

In [21]: mydict2 = { k: [v] for k, v in mydict.items()}

In [22]: mydict2
Out[22]: {'a': [1], 'b': [2]}

你也可以使用pd.DataFrame.from_records,这在你已经有字典的情况下更方便:

df = pd.DataFrame.from_records([{ 'A':a,'B':b }])

你也可以设置索引,如果你想,通过:

df = pd.DataFrame.from_records([{ 'A':a,'B':b }], index='A')