这可能是一个简单的问题,但我不知道该怎么做。假设有两个变量。
a = 2
b = 3
我想从这个构建一个数据框架:
df2 = pd.DataFrame({'A':a,'B':b})
这会产生一个错误:
ValueError:如果使用所有标量值,则必须传递一个索引
我也试过这个:
df2 = (pd.DataFrame({'a':a,'b':b})).reset_index()
这将给出相同的错误消息。
这可能是一个简单的问题,但我不知道该怎么做。假设有两个变量。
a = 2
b = 3
我想从这个构建一个数据框架:
df2 = pd.DataFrame({'A':a,'B':b})
这会产生一个错误:
ValueError:如果使用所有标量值,则必须传递一个索引
我也试过这个:
df2 = (pd.DataFrame({'a':a,'b':b})).reset_index()
这将给出相同的错误消息。
当前回答
你需要提供可迭代对象作为Pandas DataFrame列的值:
df2 = pd.DataFrame({'A':[a],'B':[b]})
其他回答
我对numpy数组也有同样的问题,解决方案是将它们压平:
data = {
'b': array1.flatten(),
'a': array2.flatten(),
}
df = pd.DataFrame(data)
你可以试着把你的字典包装成一个列表:
my_dict = {'A':1,'B':2}
pd.DataFrame([my_dict])
A B
0 1 2
import pandas as pd
a=2
b=3
dict = {'A': a, 'B': b}
pd.DataFrame(pd.Series(dict)).T
# *T :transforms the dataframe*
Result:
A B
0 2 3
只要把字典放在一个列表上:
a = 2
b = 3
df2 = pd.DataFrame([{'A':a,'B':b}])
如果你想转换一个标量字典,你必须包含一个索引:
import pandas as pd
alphabets = {'A': 'a', 'B': 'b'}
index = [0]
alphabets_df = pd.DataFrame(alphabets, index=index)
print(alphabets_df)
虽然索引对于列表字典不需要,但同样的思想可以扩展到列表字典:
planets = {'planet': ['earth', 'mars', 'jupiter'], 'length_of_day': ['1', '1.03', '0.414']}
index = [0, 1, 2]
planets_df = pd.DataFrame(planets, index=index)
print(planets_df)
当然,对于列表字典,你可以在没有索引的情况下构建数据框架:
planets_df = pd.DataFrame(planets)
print(planets_df)