我有一组X,Y数据点(大约10k),很容易绘制成散点图,但我想用热图来表示。

我查看了Matplotlib中的示例,它们似乎都已经从热图单元值开始生成图像。

有没有一种方法可以将一堆不同的x, y转换为热图(其中x, y频率较高的区域会“更温暖”)?


创建一个与最终图像中的单元格对应的二维数组,称为say heatmap_cells,并将其实例化为全零。

选择两个比例因子来定义每个数组元素在实际单位中的差异,对于每个维度,例如x_scale和y_scale。选择这些,使所有数据点都在热图数组的范围内。

对于每个带x_value和y_value的原始数据点:

heatmap_cells[地板(x_value / x_scale),地板(y_value / y_scale)] + = 1


在Matplotlib词典,我认为你需要一个hexbin plot。

如果你不熟悉这种类型的图,它只是一个二元直方图,其中xy平面由一个规则的六边形网格镶嵌。

在直方图中,你可以数出每个六边形中的点的数量,将绘图区域离散化为一组窗口,将每个点分配给这些窗口中的一个;最后,将窗口映射到一个颜色数组上,你就得到了一个hexbin图。

虽然不像圆形或正方形那样常用,但直觉上,六边形是装箱容器的几何形状的更好选择:

六边形具有最近邻对称性(例如,方形容器没有, 例如,从正方形边界上的一点到另一点的距离 正方形内部并非处处相等)和 六边形是给出正平面的最高n多边形 镶嵌(例如,你可以安全地用六边形瓷砖重新设计厨房地板,因为当你完成时,瓷砖之间不会有任何空隙——而不是所有其他高n, n >= 7的多边形)。

(Matplotlib使用术语hexbin plot;所以(AFAIK)所有的绘图库的R;我仍然不知道这是否是这种类型的图表的普遍接受术语,尽管我怀疑它很可能是六角形装箱的缩写,这描述了准备数据显示的基本步骤。)


from matplotlib import pyplot as PLT
from matplotlib import cm as CM
from matplotlib import mlab as ML
import numpy as NP

n = 1e5
x = y = NP.linspace(-5, 5, 100)
X, Y = NP.meshgrid(x, y)
Z1 = ML.bivariate_normal(X, Y, 2, 2, 0, 0)
Z2 = ML.bivariate_normal(X, Y, 4, 1, 1, 1)
ZD = Z2 - Z1
x = X.ravel()
y = Y.ravel()
z = ZD.ravel()
gridsize=30
PLT.subplot(111)

# if 'bins=None', then color of each hexagon corresponds directly to its count
# 'C' is optional--it maps values to x-y coordinates; if 'C' is None (default) then 
# the result is a pure 2D histogram 

PLT.hexbin(x, y, C=z, gridsize=gridsize, cmap=CM.jet, bins=None)
PLT.axis([x.min(), x.max(), y.min(), y.max()])

cb = PLT.colorbar()
cb.set_label('mean value')
PLT.show()   


如果你不想要六边形,你可以使用numpy的histogram2d函数:

import numpy as np
import numpy.random
import matplotlib.pyplot as plt

# Generate some test data
x = np.random.randn(8873)
y = np.random.randn(8873)

heatmap, xedges, yedges = np.histogram2d(x, y, bins=50)
extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]

plt.clf()
plt.imshow(heatmap.T, extent=extent, origin='lower')
plt.show()

这是一个50x50的热图。如果你想要,比如说512x384,你可以在调用histogram2d时放入bins=(512,384)。

例子:


如果您正在使用1.2.x

import numpy as np
import matplotlib.pyplot as plt

x = np.random.randn(100000)
y = np.random.randn(100000)
plt.hist2d(x,y,bins=100)
plt.show()


而不是用np。我想回收py-sphviewer,这是一个使用自适应平滑内核渲染粒子模拟的python包,可以很容易地从pip安装(见网页文档)。考虑以下基于示例的代码:

import numpy as np
import numpy.random
import matplotlib.pyplot as plt
import sphviewer as sph

def myplot(x, y, nb=32, xsize=500, ysize=500):   
    xmin = np.min(x)
    xmax = np.max(x)
    ymin = np.min(y)
    ymax = np.max(y)

    x0 = (xmin+xmax)/2.
    y0 = (ymin+ymax)/2.

    pos = np.zeros([len(x),3])
    pos[:,0] = x
    pos[:,1] = y
    w = np.ones(len(x))

    P = sph.Particles(pos, w, nb=nb)
    S = sph.Scene(P)
    S.update_camera(r='infinity', x=x0, y=y0, z=0, 
                    xsize=xsize, ysize=ysize)
    R = sph.Render(S)
    R.set_logscale()
    img = R.get_image()
    extent = R.get_extent()
    for i, j in zip(xrange(4), [x0,x0,y0,y0]):
        extent[i] += j
    print extent
    return img, extent
    
fig = plt.figure(1, figsize=(10,10))
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(223)
ax4 = fig.add_subplot(224)


# Generate some test data
x = np.random.randn(1000)
y = np.random.randn(1000)

#Plotting a regular scatter plot
ax1.plot(x,y,'k.', markersize=5)
ax1.set_xlim(-3,3)
ax1.set_ylim(-3,3)

heatmap_16, extent_16 = myplot(x,y, nb=16)
heatmap_32, extent_32 = myplot(x,y, nb=32)
heatmap_64, extent_64 = myplot(x,y, nb=64)

ax2.imshow(heatmap_16, extent=extent_16, origin='lower', aspect='auto')
ax2.set_title("Smoothing over 16 neighbors")

ax3.imshow(heatmap_32, extent=extent_32, origin='lower', aspect='auto')
ax3.set_title("Smoothing over 32 neighbors")

#Make the heatmap using a smoothing over 64 neighbors
ax4.imshow(heatmap_64, extent=extent_64, origin='lower', aspect='auto')
ax4.set_title("Smoothing over 64 neighbors")

plt.show()

产生如下图像:

如你所见,这些图像看起来非常漂亮,我们能够识别出它上面不同的子结构。这些图像是在一个特定的域内为每个点扩展一个给定的权重,由平滑长度定义,而平滑长度又由到更近的nb邻居的距离给出(我选择了16,32和64作为示例)。因此,高密度区域通常分布在较小的区域,与低密度区域相比。

myplot函数是我写的一个非常简单的函数它是为了将x y数据交给py-sphviewer来完成这个魔术。


Seaborn现在有了jointplot函数,它应该在这里工作得很好:

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

# Generate some test data
x = np.random.randn(8873)
y = np.random.randn(8873)

sns.jointplot(x=x, y=y, kind='hex')
plt.show()


编辑:为了更好地近似Alejandro的答案,请看下面。

我知道这是一个老问题,但想在Alejandro的回答中添加一些东西:如果你想要一个漂亮的平滑图像而不使用py-sphviewer,你可以使用np。Histogram2d,并对热图应用高斯滤波器(from scipy. nmage .filters):

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from scipy.ndimage.filters import gaussian_filter


def myplot(x, y, s, bins=1000):
    heatmap, xedges, yedges = np.histogram2d(x, y, bins=bins)
    heatmap = gaussian_filter(heatmap, sigma=s)

    extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]
    return heatmap.T, extent


fig, axs = plt.subplots(2, 2)

# Generate some test data
x = np.random.randn(1000)
y = np.random.randn(1000)

sigmas = [0, 16, 32, 64]

for ax, s in zip(axs.flatten(), sigmas):
    if s == 0:
        ax.plot(x, y, 'k.', markersize=5)
        ax.set_title("Scatter plot")
    else:
        img, extent = myplot(x, y, s)
        ax.imshow(img, extent=extent, origin='lower', cmap=cm.jet)
        ax.set_title("Smoothing with  $\sigma$ = %d" % s)

plt.show()

生产:

Agape Gal'lo的散点图和s=16相互叠加(点击查看更好的视图):


我注意到我的高斯滤波方法和亚历杭德罗的方法的一个区别是,他的方法显示局部结构比我的好得多。因此,我在像素级上实现了一个简单的最近邻方法。该方法为每个像素计算数据中n个最近点距离的逆和。这种方法的分辨率很高,计算成本很高,我认为有更快的方法,所以如果你有任何改进,请告诉我。

更新:正如我所怀疑的,有一个更快的方法使用Scipy的Scipy . ckdtree。关于实现,请参阅Gabriel的回答。

总之,这是我的代码:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm


def data_coord2view_coord(p, vlen, pmin, pmax):
    dp = pmax - pmin
    dv = (p - pmin) / dp * vlen
    return dv


def nearest_neighbours(xs, ys, reso, n_neighbours):
    im = np.zeros([reso, reso])
    extent = [np.min(xs), np.max(xs), np.min(ys), np.max(ys)]

    xv = data_coord2view_coord(xs, reso, extent[0], extent[1])
    yv = data_coord2view_coord(ys, reso, extent[2], extent[3])
    for x in range(reso):
        for y in range(reso):
            xp = (xv - x)
            yp = (yv - y)

            d = np.sqrt(xp**2 + yp**2)

            im[y][x] = 1 / np.sum(d[np.argpartition(d.ravel(), n_neighbours)[:n_neighbours]])

    return im, extent


n = 1000
xs = np.random.randn(n)
ys = np.random.randn(n)
resolution = 250

fig, axes = plt.subplots(2, 2)

for ax, neighbours in zip(axes.flatten(), [0, 16, 32, 64]):
    if neighbours == 0:
        ax.plot(xs, ys, 'k.', markersize=2)
        ax.set_aspect('equal')
        ax.set_title("Scatter Plot")
    else:
        im, extent = nearest_neighbours(xs, ys, resolution, neighbours)
        ax.imshow(im, origin='lower', extent=extent, cmap=cm.jet)
        ax.set_title("Smoothing over %d neighbours" % neighbours)
        ax.set_xlim(extent[0], extent[1])
        ax.set_ylim(extent[2], extent[3])
plt.show()

结果:


最初的问题是…如何将散点值转换为网格值? Histogram2d确实计算每个单元格的频率,但是,如果每个单元格除了频率之外还有其他数据,则需要做一些额外的工作。

x = data_x # between -10 and 4, log-gamma of an svc
y = data_y # between -4 and 11, log-C of an svc
z = data_z #between 0 and 0.78, f1-values from a difficult dataset

我有一个数据集,X和Y坐标的z结果。然而,我计算的是兴趣区域之外的几个点(大的差距),而在一个小的兴趣区域内的一堆点。

是的,在这里它变得更困难,但也更有趣。一些库(抱歉):

from matplotlib import pyplot as plt
from matplotlib import cm
import numpy as np
from scipy.interpolate import griddata

Pyplot是我今天的图形引擎, Cm是一个彩色地图的范围,有一些有趣的选择。 Numpy来计算, 和griddata用于将值附加到固定网格。

最后一点很重要,因为xy点的频率在我的数据中不是均匀分布的。首先,让我们从适合我的数据和任意网格大小的边界开始。原始数据的数据点也在这些x和y边界之外。

#determine grid boundaries
gridsize = 500
x_min = -8
x_max = 2.5
y_min = -2
y_max = 7

所以我们已经定义了一个在x和y的最小值和最大值之间有500像素的网格。

在我的数据中,在高度感兴趣的领域,有超过500个可用值;而在低兴趣区域,整个网格中甚至没有200个值;在x_min和x_max的图形边界之间就更少了。

因此,要得到一张漂亮的图片,任务就是求出高兴趣值的平均值,并填补其他地方的空白。

我现在定义我的网格。对于每一对xx-yy,我想有一个颜色。

xx = np.linspace(x_min, x_max, gridsize) # array of x values
yy = np.linspace(y_min, y_max, gridsize) # array of y values
grid = np.array(np.meshgrid(xx, yy.T))
grid = grid.reshape(2, grid.shape[1]*grid.shape[2]).T

为什么会有这么奇怪的形状?scipy。griddata需要一个(n, D)的形状。

Griddata通过预定义的方法计算网格中的每个点的值。 我选择“最近”-空网格点将被来自最近邻居的值填充。这看起来好像信息较少的区域有更大的细胞(即使事实并非如此)。人们可以选择插值“线性”,那么信息较少的区域看起来不那么清晰。这是品味问题,真的。

points = np.array([x, y]).T # because griddata wants it that way
z_grid2 = griddata(points, z, grid, method='nearest')
# you get a 1D vector as result. Reshape to picture format!
z_grid2 = z_grid2.reshape(xx.shape[0], yy.shape[0])

跳跃时,我们交给matplotlib来显示图

fig = plt.figure(1, figsize=(10, 10))
ax1 = fig.add_subplot(111)
ax1.imshow(z_grid2, extent=[x_min, x_max,y_min, y_max,  ],
            origin='lower', cmap=cm.magma)
ax1.set_title("SVC: empty spots filled by nearest neighbours")
ax1.set_xlabel('log gamma')
ax1.set_ylabel('log C')
plt.show()

在v型的尖端部分,你可以看到,我在寻找最佳点的过程中做了很多计算,而几乎所有其他地方的不太有趣的部分都有较低的分辨率。


非常类似于@Piti的答案,但使用1次调用而不是2次调用来生成点:

import numpy as np
import matplotlib.pyplot as plt

pts = 1000000
mean = [0.0, 0.0]
cov = [[1.0,0.0],[0.0,1.0]]

x,y = np.random.multivariate_normal(mean, cov, pts).T
plt.hist2d(x, y, bins=50, cmap=plt.cm.jet)
plt.show()

输出:


恐怕我来晚了一点,但我之前也有一个类似的问题。接受的答案(@ptomato)帮助了我,但我也想张贴这个,以防它对某人有用。


''' I wanted to create a heatmap resembling a football pitch which would show the different actions performed '''

import numpy as np
import matplotlib.pyplot as plt
import random

#fixing random state for reproducibility
np.random.seed(1234324)

fig = plt.figure(12)
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)

#Ratio of the pitch with respect to UEFA standards 
hmap= np.full((6, 10), 0)
#print(hmap)

xlist = np.random.uniform(low=0.0, high=100.0, size=(20))
ylist = np.random.uniform(low=0.0, high =100.0, size =(20))

#UEFA Pitch Standards are 105m x 68m
xlist = (xlist/100)*10.5
ylist = (ylist/100)*6.5

ax1.scatter(xlist,ylist)

#int of the co-ordinates to populate the array
xlist_int = xlist.astype (int)
ylist_int = ylist.astype (int)

#print(xlist_int, ylist_int)

for i, j in zip(xlist_int, ylist_int):
    #this populates the array according to the x,y co-ordinate values it encounters 
    hmap[j][i]= hmap[j][i] + 1   

#Reversing the rows is necessary 
hmap = hmap[::-1]

#print(hmap)
im = ax2.imshow(hmap)


这是结果


下面是我在100万个点集上做的一个,有3个类别(红色、绿色和蓝色)。如果您想尝试这个功能,这里有一个到存储库的链接。Github回购

histplot(
    X,
    Y,
    labels,
    bins=2000,
    range=((-3,3),(-3,3)),
    normalize_each_label=True,
    colors = [
        [1,0,0],
        [0,1,0],
        [0,0,1]],
    gain=50)

下面是Jurgy使用scipy.cKDTree实现的最近邻方法。在我的测试中,它快了大约100倍。

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from scipy.spatial import cKDTree


def data_coord2view_coord(p, resolution, pmin, pmax):
    dp = pmax - pmin
    dv = (p - pmin) / dp * resolution
    return dv


n = 1000
xs = np.random.randn(n)
ys = np.random.randn(n)

resolution = 250

extent = [np.min(xs), np.max(xs), np.min(ys), np.max(ys)]
xv = data_coord2view_coord(xs, resolution, extent[0], extent[1])
yv = data_coord2view_coord(ys, resolution, extent[2], extent[3])


def kNN2DDens(xv, yv, resolution, neighbours, dim=2):
    """
    """
    # Create the tree
    tree = cKDTree(np.array([xv, yv]).T)
    # Find the closest nnmax-1 neighbors (first entry is the point itself)
    grid = np.mgrid[0:resolution, 0:resolution].T.reshape(resolution**2, dim)
    dists = tree.query(grid, neighbours)
    # Inverse of the sum of distances to each grid point.
    inv_sum_dists = 1. / dists[0].sum(1)

    # Reshape
    im = inv_sum_dists.reshape(resolution, resolution)
    return im


fig, axes = plt.subplots(2, 2, figsize=(15, 15))
for ax, neighbours in zip(axes.flatten(), [0, 16, 32, 63]):

    if neighbours == 0:
        ax.plot(xs, ys, 'k.', markersize=5)
        ax.set_aspect('equal')
        ax.set_title("Scatter Plot")
    else:

        im = kNN2DDens(xv, yv, resolution, neighbours)

        ax.imshow(im, origin='lower', extent=extent, cmap=cm.Blues)
        ax.set_title("Smoothing over %d neighbours" % neighbours)
        ax.set_xlim(extent[0], extent[1])
        ax.set_ylim(extent[2], extent[3])

plt.savefig('new.png', dpi=150, bbox_inches='tight')

这些解决方案都不适用于我的应用程序,所以我想出了这个解决方案。本质上,我在每个点上都放置了一个二维高斯分布:

import cv2
import numpy as np
import matplotlib.pyplot as plt

def getGaussian2D(ksize, sigma, norm=True):
    oneD = cv2.getGaussianKernel(ksize=ksize, sigma=sigma)
    twoD = np.outer(oneD.T, oneD)
    return twoD / np.sum(twoD) if norm else twoD

def pt2heat(pts, shape, kernel=16, sigma=5):
    heat = np.zeros(shape)
    k = getGaussian2D(kernel, sigma)
    for y,x in pts:
        x, y = int(x), int(y)
        for i in range(-kernel//2, kernel//2):
            for j in range(-kernel//2, kernel//2):
                if 0 <= x+i < shape[0] and 0 <= y+j < shape[1]:
                    heat[x+i, y+j] = heat[x+i, y+j] + k[i+kernel//2, j+kernel//2]
    return heat


heat = pts2heat(pts, img.shape[:2])
plt.imshow(heat, cmap='heat')

以下是在相关图像上叠加的点,以及生成的热图: