我有一组X,Y数据点(大约10k),很容易绘制成散点图,但我想用热图来表示。

我查看了Matplotlib中的示例,它们似乎都已经从热图单元值开始生成图像。

有没有一种方法可以将一堆不同的x, y转换为热图(其中x, y频率较高的区域会“更温暖”)?


当前回答

在Matplotlib词典,我认为你需要一个hexbin plot。

如果你不熟悉这种类型的图,它只是一个二元直方图,其中xy平面由一个规则的六边形网格镶嵌。

在直方图中,你可以数出每个六边形中的点的数量,将绘图区域离散化为一组窗口,将每个点分配给这些窗口中的一个;最后,将窗口映射到一个颜色数组上,你就得到了一个hexbin图。

虽然不像圆形或正方形那样常用,但直觉上,六边形是装箱容器的几何形状的更好选择:

六边形具有最近邻对称性(例如,方形容器没有, 例如,从正方形边界上的一点到另一点的距离 正方形内部并非处处相等)和 六边形是给出正平面的最高n多边形 镶嵌(例如,你可以安全地用六边形瓷砖重新设计厨房地板,因为当你完成时,瓷砖之间不会有任何空隙——而不是所有其他高n, n >= 7的多边形)。

(Matplotlib使用术语hexbin plot;所以(AFAIK)所有的绘图库的R;我仍然不知道这是否是这种类型的图表的普遍接受术语,尽管我怀疑它很可能是六角形装箱的缩写,这描述了准备数据显示的基本步骤。)


from matplotlib import pyplot as PLT
from matplotlib import cm as CM
from matplotlib import mlab as ML
import numpy as NP

n = 1e5
x = y = NP.linspace(-5, 5, 100)
X, Y = NP.meshgrid(x, y)
Z1 = ML.bivariate_normal(X, Y, 2, 2, 0, 0)
Z2 = ML.bivariate_normal(X, Y, 4, 1, 1, 1)
ZD = Z2 - Z1
x = X.ravel()
y = Y.ravel()
z = ZD.ravel()
gridsize=30
PLT.subplot(111)

# if 'bins=None', then color of each hexagon corresponds directly to its count
# 'C' is optional--it maps values to x-y coordinates; if 'C' is None (default) then 
# the result is a pure 2D histogram 

PLT.hexbin(x, y, C=z, gridsize=gridsize, cmap=CM.jet, bins=None)
PLT.axis([x.min(), x.max(), y.min(), y.max()])

cb = PLT.colorbar()
cb.set_label('mean value')
PLT.show()   

其他回答

恐怕我来晚了一点,但我之前也有一个类似的问题。接受的答案(@ptomato)帮助了我,但我也想张贴这个,以防它对某人有用。


''' I wanted to create a heatmap resembling a football pitch which would show the different actions performed '''

import numpy as np
import matplotlib.pyplot as plt
import random

#fixing random state for reproducibility
np.random.seed(1234324)

fig = plt.figure(12)
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)

#Ratio of the pitch with respect to UEFA standards 
hmap= np.full((6, 10), 0)
#print(hmap)

xlist = np.random.uniform(low=0.0, high=100.0, size=(20))
ylist = np.random.uniform(low=0.0, high =100.0, size =(20))

#UEFA Pitch Standards are 105m x 68m
xlist = (xlist/100)*10.5
ylist = (ylist/100)*6.5

ax1.scatter(xlist,ylist)

#int of the co-ordinates to populate the array
xlist_int = xlist.astype (int)
ylist_int = ylist.astype (int)

#print(xlist_int, ylist_int)

for i, j in zip(xlist_int, ylist_int):
    #this populates the array according to the x,y co-ordinate values it encounters 
    hmap[j][i]= hmap[j][i] + 1   

#Reversing the rows is necessary 
hmap = hmap[::-1]

#print(hmap)
im = ax2.imshow(hmap)


这是结果

非常类似于@Piti的答案,但使用1次调用而不是2次调用来生成点:

import numpy as np
import matplotlib.pyplot as plt

pts = 1000000
mean = [0.0, 0.0]
cov = [[1.0,0.0],[0.0,1.0]]

x,y = np.random.multivariate_normal(mean, cov, pts).T
plt.hist2d(x, y, bins=50, cmap=plt.cm.jet)
plt.show()

输出:

这些解决方案都不适用于我的应用程序,所以我想出了这个解决方案。本质上,我在每个点上都放置了一个二维高斯分布:

import cv2
import numpy as np
import matplotlib.pyplot as plt

def getGaussian2D(ksize, sigma, norm=True):
    oneD = cv2.getGaussianKernel(ksize=ksize, sigma=sigma)
    twoD = np.outer(oneD.T, oneD)
    return twoD / np.sum(twoD) if norm else twoD

def pt2heat(pts, shape, kernel=16, sigma=5):
    heat = np.zeros(shape)
    k = getGaussian2D(kernel, sigma)
    for y,x in pts:
        x, y = int(x), int(y)
        for i in range(-kernel//2, kernel//2):
            for j in range(-kernel//2, kernel//2):
                if 0 <= x+i < shape[0] and 0 <= y+j < shape[1]:
                    heat[x+i, y+j] = heat[x+i, y+j] + k[i+kernel//2, j+kernel//2]
    return heat


heat = pts2heat(pts, img.shape[:2])
plt.imshow(heat, cmap='heat')

以下是在相关图像上叠加的点,以及生成的热图:

创建一个与最终图像中的单元格对应的二维数组,称为say heatmap_cells,并将其实例化为全零。

选择两个比例因子来定义每个数组元素在实际单位中的差异,对于每个维度,例如x_scale和y_scale。选择这些,使所有数据点都在热图数组的范围内。

对于每个带x_value和y_value的原始数据点:

heatmap_cells[地板(x_value / x_scale),地板(y_value / y_scale)] + = 1

而不是用np。我想回收py-sphviewer,这是一个使用自适应平滑内核渲染粒子模拟的python包,可以很容易地从pip安装(见网页文档)。考虑以下基于示例的代码:

import numpy as np
import numpy.random
import matplotlib.pyplot as plt
import sphviewer as sph

def myplot(x, y, nb=32, xsize=500, ysize=500):   
    xmin = np.min(x)
    xmax = np.max(x)
    ymin = np.min(y)
    ymax = np.max(y)

    x0 = (xmin+xmax)/2.
    y0 = (ymin+ymax)/2.

    pos = np.zeros([len(x),3])
    pos[:,0] = x
    pos[:,1] = y
    w = np.ones(len(x))

    P = sph.Particles(pos, w, nb=nb)
    S = sph.Scene(P)
    S.update_camera(r='infinity', x=x0, y=y0, z=0, 
                    xsize=xsize, ysize=ysize)
    R = sph.Render(S)
    R.set_logscale()
    img = R.get_image()
    extent = R.get_extent()
    for i, j in zip(xrange(4), [x0,x0,y0,y0]):
        extent[i] += j
    print extent
    return img, extent
    
fig = plt.figure(1, figsize=(10,10))
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(223)
ax4 = fig.add_subplot(224)


# Generate some test data
x = np.random.randn(1000)
y = np.random.randn(1000)

#Plotting a regular scatter plot
ax1.plot(x,y,'k.', markersize=5)
ax1.set_xlim(-3,3)
ax1.set_ylim(-3,3)

heatmap_16, extent_16 = myplot(x,y, nb=16)
heatmap_32, extent_32 = myplot(x,y, nb=32)
heatmap_64, extent_64 = myplot(x,y, nb=64)

ax2.imshow(heatmap_16, extent=extent_16, origin='lower', aspect='auto')
ax2.set_title("Smoothing over 16 neighbors")

ax3.imshow(heatmap_32, extent=extent_32, origin='lower', aspect='auto')
ax3.set_title("Smoothing over 32 neighbors")

#Make the heatmap using a smoothing over 64 neighbors
ax4.imshow(heatmap_64, extent=extent_64, origin='lower', aspect='auto')
ax4.set_title("Smoothing over 64 neighbors")

plt.show()

产生如下图像:

如你所见,这些图像看起来非常漂亮,我们能够识别出它上面不同的子结构。这些图像是在一个特定的域内为每个点扩展一个给定的权重,由平滑长度定义,而平滑长度又由到更近的nb邻居的距离给出(我选择了16,32和64作为示例)。因此,高密度区域通常分布在较小的区域,与低密度区域相比。

myplot函数是我写的一个非常简单的函数它是为了将x y数据交给py-sphviewer来完成这个魔术。