我有一组X,Y数据点(大约10k),很容易绘制成散点图,但我想用热图来表示。

我查看了Matplotlib中的示例,它们似乎都已经从热图单元值开始生成图像。

有没有一种方法可以将一堆不同的x, y转换为热图(其中x, y频率较高的区域会“更温暖”)?


当前回答

Seaborn现在有了jointplot函数,它应该在这里工作得很好:

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

# Generate some test data
x = np.random.randn(8873)
y = np.random.randn(8873)

sns.jointplot(x=x, y=y, kind='hex')
plt.show()

其他回答

在Matplotlib词典,我认为你需要一个hexbin plot。

如果你不熟悉这种类型的图,它只是一个二元直方图,其中xy平面由一个规则的六边形网格镶嵌。

在直方图中,你可以数出每个六边形中的点的数量,将绘图区域离散化为一组窗口,将每个点分配给这些窗口中的一个;最后,将窗口映射到一个颜色数组上,你就得到了一个hexbin图。

虽然不像圆形或正方形那样常用,但直觉上,六边形是装箱容器的几何形状的更好选择:

六边形具有最近邻对称性(例如,方形容器没有, 例如,从正方形边界上的一点到另一点的距离 正方形内部并非处处相等)和 六边形是给出正平面的最高n多边形 镶嵌(例如,你可以安全地用六边形瓷砖重新设计厨房地板,因为当你完成时,瓷砖之间不会有任何空隙——而不是所有其他高n, n >= 7的多边形)。

(Matplotlib使用术语hexbin plot;所以(AFAIK)所有的绘图库的R;我仍然不知道这是否是这种类型的图表的普遍接受术语,尽管我怀疑它很可能是六角形装箱的缩写,这描述了准备数据显示的基本步骤。)


from matplotlib import pyplot as PLT
from matplotlib import cm as CM
from matplotlib import mlab as ML
import numpy as NP

n = 1e5
x = y = NP.linspace(-5, 5, 100)
X, Y = NP.meshgrid(x, y)
Z1 = ML.bivariate_normal(X, Y, 2, 2, 0, 0)
Z2 = ML.bivariate_normal(X, Y, 4, 1, 1, 1)
ZD = Z2 - Z1
x = X.ravel()
y = Y.ravel()
z = ZD.ravel()
gridsize=30
PLT.subplot(111)

# if 'bins=None', then color of each hexagon corresponds directly to its count
# 'C' is optional--it maps values to x-y coordinates; if 'C' is None (default) then 
# the result is a pure 2D histogram 

PLT.hexbin(x, y, C=z, gridsize=gridsize, cmap=CM.jet, bins=None)
PLT.axis([x.min(), x.max(), y.min(), y.max()])

cb = PLT.colorbar()
cb.set_label('mean value')
PLT.show()   

如果你不想要六边形,你可以使用numpy的histogram2d函数:

import numpy as np
import numpy.random
import matplotlib.pyplot as plt

# Generate some test data
x = np.random.randn(8873)
y = np.random.randn(8873)

heatmap, xedges, yedges = np.histogram2d(x, y, bins=50)
extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]

plt.clf()
plt.imshow(heatmap.T, extent=extent, origin='lower')
plt.show()

这是一个50x50的热图。如果你想要,比如说512x384,你可以在调用histogram2d时放入bins=(512,384)。

例子:

而不是用np。我想回收py-sphviewer,这是一个使用自适应平滑内核渲染粒子模拟的python包,可以很容易地从pip安装(见网页文档)。考虑以下基于示例的代码:

import numpy as np
import numpy.random
import matplotlib.pyplot as plt
import sphviewer as sph

def myplot(x, y, nb=32, xsize=500, ysize=500):   
    xmin = np.min(x)
    xmax = np.max(x)
    ymin = np.min(y)
    ymax = np.max(y)

    x0 = (xmin+xmax)/2.
    y0 = (ymin+ymax)/2.

    pos = np.zeros([len(x),3])
    pos[:,0] = x
    pos[:,1] = y
    w = np.ones(len(x))

    P = sph.Particles(pos, w, nb=nb)
    S = sph.Scene(P)
    S.update_camera(r='infinity', x=x0, y=y0, z=0, 
                    xsize=xsize, ysize=ysize)
    R = sph.Render(S)
    R.set_logscale()
    img = R.get_image()
    extent = R.get_extent()
    for i, j in zip(xrange(4), [x0,x0,y0,y0]):
        extent[i] += j
    print extent
    return img, extent
    
fig = plt.figure(1, figsize=(10,10))
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(223)
ax4 = fig.add_subplot(224)


# Generate some test data
x = np.random.randn(1000)
y = np.random.randn(1000)

#Plotting a regular scatter plot
ax1.plot(x,y,'k.', markersize=5)
ax1.set_xlim(-3,3)
ax1.set_ylim(-3,3)

heatmap_16, extent_16 = myplot(x,y, nb=16)
heatmap_32, extent_32 = myplot(x,y, nb=32)
heatmap_64, extent_64 = myplot(x,y, nb=64)

ax2.imshow(heatmap_16, extent=extent_16, origin='lower', aspect='auto')
ax2.set_title("Smoothing over 16 neighbors")

ax3.imshow(heatmap_32, extent=extent_32, origin='lower', aspect='auto')
ax3.set_title("Smoothing over 32 neighbors")

#Make the heatmap using a smoothing over 64 neighbors
ax4.imshow(heatmap_64, extent=extent_64, origin='lower', aspect='auto')
ax4.set_title("Smoothing over 64 neighbors")

plt.show()

产生如下图像:

如你所见,这些图像看起来非常漂亮,我们能够识别出它上面不同的子结构。这些图像是在一个特定的域内为每个点扩展一个给定的权重,由平滑长度定义,而平滑长度又由到更近的nb邻居的距离给出(我选择了16,32和64作为示例)。因此,高密度区域通常分布在较小的区域,与低密度区域相比。

myplot函数是我写的一个非常简单的函数它是为了将x y数据交给py-sphviewer来完成这个魔术。

最初的问题是…如何将散点值转换为网格值? Histogram2d确实计算每个单元格的频率,但是,如果每个单元格除了频率之外还有其他数据,则需要做一些额外的工作。

x = data_x # between -10 and 4, log-gamma of an svc
y = data_y # between -4 and 11, log-C of an svc
z = data_z #between 0 and 0.78, f1-values from a difficult dataset

我有一个数据集,X和Y坐标的z结果。然而,我计算的是兴趣区域之外的几个点(大的差距),而在一个小的兴趣区域内的一堆点。

是的,在这里它变得更困难,但也更有趣。一些库(抱歉):

from matplotlib import pyplot as plt
from matplotlib import cm
import numpy as np
from scipy.interpolate import griddata

Pyplot是我今天的图形引擎, Cm是一个彩色地图的范围,有一些有趣的选择。 Numpy来计算, 和griddata用于将值附加到固定网格。

最后一点很重要,因为xy点的频率在我的数据中不是均匀分布的。首先,让我们从适合我的数据和任意网格大小的边界开始。原始数据的数据点也在这些x和y边界之外。

#determine grid boundaries
gridsize = 500
x_min = -8
x_max = 2.5
y_min = -2
y_max = 7

所以我们已经定义了一个在x和y的最小值和最大值之间有500像素的网格。

在我的数据中,在高度感兴趣的领域,有超过500个可用值;而在低兴趣区域,整个网格中甚至没有200个值;在x_min和x_max的图形边界之间就更少了。

因此,要得到一张漂亮的图片,任务就是求出高兴趣值的平均值,并填补其他地方的空白。

我现在定义我的网格。对于每一对xx-yy,我想有一个颜色。

xx = np.linspace(x_min, x_max, gridsize) # array of x values
yy = np.linspace(y_min, y_max, gridsize) # array of y values
grid = np.array(np.meshgrid(xx, yy.T))
grid = grid.reshape(2, grid.shape[1]*grid.shape[2]).T

为什么会有这么奇怪的形状?scipy。griddata需要一个(n, D)的形状。

Griddata通过预定义的方法计算网格中的每个点的值。 我选择“最近”-空网格点将被来自最近邻居的值填充。这看起来好像信息较少的区域有更大的细胞(即使事实并非如此)。人们可以选择插值“线性”,那么信息较少的区域看起来不那么清晰。这是品味问题,真的。

points = np.array([x, y]).T # because griddata wants it that way
z_grid2 = griddata(points, z, grid, method='nearest')
# you get a 1D vector as result. Reshape to picture format!
z_grid2 = z_grid2.reshape(xx.shape[0], yy.shape[0])

跳跃时,我们交给matplotlib来显示图

fig = plt.figure(1, figsize=(10, 10))
ax1 = fig.add_subplot(111)
ax1.imshow(z_grid2, extent=[x_min, x_max,y_min, y_max,  ],
            origin='lower', cmap=cm.magma)
ax1.set_title("SVC: empty spots filled by nearest neighbours")
ax1.set_xlabel('log gamma')
ax1.set_ylabel('log C')
plt.show()

在v型的尖端部分,你可以看到,我在寻找最佳点的过程中做了很多计算,而几乎所有其他地方的不太有趣的部分都有较低的分辨率。

如果您正在使用1.2.x

import numpy as np
import matplotlib.pyplot as plt

x = np.random.randn(100000)
y = np.random.randn(100000)
plt.hist2d(x,y,bins=100)
plt.show()