我试图使用scikit-learn的LabelEncoder来编码字符串标签的pandas DataFrame。由于数据帧有许多(50+)列,我想避免为每一列创建一个LabelEncoder对象;我宁愿只有一个大的LabelEncoder对象,它可以跨所有数据列工作。
将整个DataFrame扔到LabelEncoder中会产生以下错误。请记住,我在这里使用的是虚拟数据;实际上,我正在处理大约50列的字符串标记数据,所以需要一个解决方案,不引用任何列的名称。
import pandas
from sklearn import preprocessing
df = pandas.DataFrame({
'pets': ['cat', 'dog', 'cat', 'monkey', 'dog', 'dog'],
'owner': ['Champ', 'Ron', 'Brick', 'Champ', 'Veronica', 'Ron'],
'location': ['San_Diego', 'New_York', 'New_York', 'San_Diego', 'San_Diego',
'New_York']
})
le = preprocessing.LabelEncoder()
le.fit(df)
回溯(最近一次调用):
文件“”,第1行,在
文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/预处理/label.py",第103行
y = column_or_1d(y, warn=True)
文件"/Users/bbalin/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py",第306行,在column_or_1d中
raise ValueError("错误的输入形状{0}".format(形状))
ValueError:错误的输入形状(6,3)
对于如何解决这个问题有什么想法吗?
我们可以使用scikit learn中的OrdinalEncoder来代替LabelEncoder,它允许多列编码。
将分类特征编码为整数数组。
这个转换器的输入应该是一个类似数组的整数或字符串,表示分类(离散)特征所取的值。特征被转换为序号整数。这将导致每个特性生成一列整数(0到n_categories - 1)。
>>> from sklearn.preprocessing import OrdinalEncoder
>>> enc = OrdinalEncoder()
>>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
>>> enc.fit(X)
OrdinalEncoder()
>>> enc.categories_
[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
>>> enc.transform([['Female', 3], ['Male', 1]])
array([[0., 2.],
[1., 0.]])
描述和示例都是从它的文档页面复制的,你可以在这里找到:
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html#sklearn.preprocessing.OrdinalEncoder
import pandas as pd
from sklearn.preprocessing import LabelEncoder
train=pd.read_csv('.../train.csv')
#X=train.loc[:,['waterpoint_type_group','status','waterpoint_type','source_class']].values
# Create a label encoder object
def MultiLabelEncoder(columnlist,dataframe):
for i in columnlist:
labelencoder_X=LabelEncoder()
dataframe[i]=labelencoder_X.fit_transform(dataframe[i])
columnlist=['waterpoint_type_group','status','waterpoint_type','source_class','source_type']
MultiLabelEncoder(columnlist,train)
在这里,我正在从位置读取一个csv,在函数中,我正在传递列列表,我想要labelencode和dataframe,我想应用这个。