如何编写从CSV文件导入数据并填充表的存储过程?


当前回答

您可以创建一个Bash文件import.sh(您的CSV格式是一个制表符分隔符):

#!/usr/bin/env bash

USER="test"
DB="postgres"
TBALE_NAME="user"
CSV_DIR="$(pwd)/csv"
FILE_NAME="user.txt"

echo $(psql -d $DB -U $USER  -c "\copy $TBALE_NAME from '$CSV_DIR/$FILE_NAME' DELIMITER E'\t' csv" 2>&1 |tee /dev/tty)

然后运行这个脚本。

其他回答

您可以创建一个Bash文件import.sh(您的CSV格式是一个制表符分隔符):

#!/usr/bin/env bash

USER="test"
DB="postgres"
TBALE_NAME="user"
CSV_DIR="$(pwd)/csv"
FILE_NAME="user.txt"

echo $(psql -d $DB -U $USER  -c "\copy $TBALE_NAME from '$CSV_DIR/$FILE_NAME' DELIMITER E'\t' csv" 2>&1 |tee /dev/tty)

然后运行这个脚本。

COPY table_name FROM 'path/to/data.csv' DELIMITER ',' CSV HEADER;

如何将CSV文件数据导入PostgreSQL表

步骤:

Need to connect a PostgreSQL database in the terminal psql -U postgres -h localhost Need to create a database create database mydb; Need to create a user create user siva with password 'mypass'; Connect with the database \c mydb; Need to create a schema create schema trip; Need to create a table create table trip.test(VendorID int,passenger_count int,trip_distance decimal,RatecodeID int,store_and_fwd_flag varchar,PULocationID int,DOLocationID int,payment_type decimal,fare_amount decimal,extra decimal,mta_tax decimal,tip_amount decimal,tolls_amount int,improvement_surcharge decimal,total_amount ); Import csv file data to postgresql COPY trip.test(VendorID int,passenger_count int,trip_distance decimal,RatecodeID int,store_and_fwd_flag varchar,PULocationID int,DOLocationID int,payment_type decimal,fare_amount decimal,extra decimal,mta_tax decimal,tip_amount decimal,tolls_amount int,improvement_surcharge decimal,total_amount) FROM '/home/Documents/trip.csv' DELIMITER ',' CSV HEADER; Find the given table data select * from trip.test;

一种快速的方法是使用Python Pandas库(0.15或更高版本最好)。这将为您处理创建列的问题——尽管它为数据类型所做的选择可能不是您想要的。如果它不能完全做到你想要的,你总是可以使用生成为模板的“创建表”代码。

这里有一个简单的例子:

import pandas as pd
df = pd.read_csv('mypath.csv')
df.columns = [c.lower() for c in df.columns] # PostgreSQL doesn't like capitals or spaces

from sqlalchemy import create_engine
engine = create_engine('postgresql://username:password@localhost:5432/dbname')

df.to_sql("my_table_name", engine)

下面是一些代码,告诉你如何设置各种选项:

# Set it so the raw SQL output is logged
import logging
logging.basicConfig()
logging.getLogger('sqlalchemy.engine').setLevel(logging.INFO)

df.to_sql("my_table_name2",
          engine,
          if_exists="append",  # Options are ‘fail’, ‘replace’, ‘append’, default ‘fail’
          index = False, # Do not output the index of the dataframe
          dtype = {'col1': sqlalchemy.types.NUMERIC,
                   'col2': sqlalchemy.types.String}) # Datatypes should be SQLAlchemy types

您还可以使用pgAdmin,它提供了一个GUI来执行导入。这在这个SO线程中显示。使用pgAdmin的优点是它也适用于远程数据库。

不过,与前面的解决方案非常相似,您需要在数据库中已经有表。每个人都有自己的解决方案,但我通常在Excel中打开CSV文件,复制标题,在不同的工作表上粘贴特殊的换位,在下一列上放置相应的数据类型,然后将其复制并粘贴到文本编辑器中,并使用适当的SQL表创建查询,如下所示:

CREATE TABLE my_table (
    /* Paste data from Excel here for example ... */
    col_1 bigint,
    col_2 bigint,
    /* ... */
    col_n bigint
)