我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
我如何创建一个空DataFrame,然后添加行,一个接一个?
我创建了一个空DataFrame:
df = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
然后我可以在最后添加一个新行,并填充一个字段:
df = df._set_value(index=len(df), col='qty1', value=10.0)
它一次只适用于一个领域。向df中添加新行有什么更好的方法?
当前回答
简单点。通过将一个列表作为输入,该列表将作为一行添加到数据帧中:
import pandas as pd
res = pd.DataFrame(columns=('lib', 'qty1', 'qty2'))
for i in range(5):
res_list = list(map(int, input().split()))
res = res.append(pd.Series(res_list, index=['lib', 'qty1', 'qty2']), ignore_index=True)
其他回答
你可以用df。Loc [i],其中索引为i的行将是你在数据框架中指定的行。
>>> import pandas as pd
>>> from numpy.random import randint
>>> df = pd.DataFrame(columns=['lib', 'qty1', 'qty2'])
>>> for i in range(5):
>>> df.loc[i] = ['name' + str(i)] + list(randint(10, size=2))
>>> df
lib qty1 qty2
0 name0 3 3
1 name1 2 4
2 name2 2 8
3 name3 2 1
4 name4 9 6
有关有效附加,请参见如何向pandas数据框架添加额外行和使用放大设置。
通过loc/ix在不存在的键索引数据上添加行。例如:
In [1]: se = pd.Series([1,2,3])
In [2]: se
Out[2]:
0 1
1 2
2 3
dtype: int64
In [3]: se[5] = 5.
In [4]: se
Out[4]:
0 1.0
1 2.0
2 3.0
5 5.0
dtype: float64
Or:
In [1]: dfi = pd.DataFrame(np.arange(6).reshape(3,2),
.....: columns=['A','B'])
.....:
In [2]: dfi
Out[2]:
A B
0 0 1
1 2 3
2 4 5
In [3]: dfi.loc[:,'C'] = dfi.loc[:,'A']
In [4]: dfi
Out[4]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
In [5]: dfi.loc[3] = 5
In [6]: dfi
Out[6]:
A B C
0 0 1 0
1 2 3 2
2 4 5 4
3 5 5 5
pandas.DataFrame.append
DataFrame。append(self, other, ignore_index=False, verify_integrity=False, sort=False)→'数据帧'
Code
df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
df.append(df2)
ignore_index设置为True:
df.append(df2, ignore_index=True)
我们经常看到结构df。loc[下标]=…分配给一个数据帧行。Mikhail_Sam发布了包含这个构造以及使用dict并最终创建DataFrame的方法的基准测试。他发现后者是目前为止最快的。
但是如果我们替换df3。loc[i] =…(与预分配的DataFrame)在他的代码df3。值[i] =…时,结果会发生显著变化,因为该方法的执行与使用dict的方法类似。所以我们应该经常使用df。考虑[下标]=…但是请注意,.values有一个从零开始的下标,这可能与DataFrame.index不同。
如果你的Dataframe中的所有数据都有相同的dtype,你可以使用NumPy数组。您可以直接将行写入预定义数组,并在最后将其转换为数据框架。 它似乎比转换字典列表还要快。
import pandas as pd
import numpy as np
from string import ascii_uppercase
startTime = time.perf_counter()
numcols, numrows = 5, 10000
npdf = np.ones((numrows, numcols))
for row in range(numrows):
npdf[row, 0:] = np.random.randint(0, 100, (1, numcols))
df5 = pd.DataFrame(npdf, columns=list(ascii_uppercase[:numcols]))
print('Elapsed time: {:6.3f} seconds for {:d} rows'.format(time.perf_counter() - startTime, numOfRows))
print(df5.shape)