今天我需要一个简单的算法来检查一个数字是否是2的幂。
该算法需要:
简单的
适用于任何ulong值。
我想出了这个简单的算法:
private bool IsPowerOfTwo(ulong number)
{
if (number == 0)
return false;
for (ulong power = 1; power > 0; power = power << 1)
{
// This for loop used shifting for powers of 2, meaning
// that the value will become 0 after the last shift
// (from binary 1000...0000 to 0000...0000) then, the 'for'
// loop will break out.
if (power == number)
return true;
if (power > number)
return false;
}
return false;
}
但后来我想:如何检查log2x是否恰好是一个整数呢?当我检查2^63+1时,Math.Log()因为四舍五入而返回恰好63。我检查了2的63次方是否等于原来的数,结果是正确的,因为计算是双倍的,而不是精确的数字。
private bool IsPowerOfTwo_2(ulong number)
{
double log = Math.Log(number, 2);
double pow = Math.Pow(2, Math.Round(log));
return pow == number;
}
这对于给定的错误值返回true: 9223372036854775809。
有没有更好的算法?
一些网站记录并解释了这一点和其他一些无聊的黑客:
http://graphics.stanford.edu/~seander/bithacks.html
(http://graphics.stanford.edu/ ~ seander / bithacks.html # DetermineIfPowerOf2)
http://bits.stephan-brumme.com/
(http://bits.stephan-brumme.com/isPowerOfTwo.html)
他们的祖父,小亨利·沃伦(Henry Warren, Jr.)写的《黑客的喜悦》(Hacker’s Delight):
http://www.hackersdelight.org/
正如Sean Anderson的页面解释的那样,表达式((x & (x - 1)) == 0)错误地表明0是2的幂。他建议使用:
(!(x & (x - 1)) && x)
为了纠正这个问题。
如果一个数字只包含1个设置位,则它是2的幂。我们可以使用这个属性和泛型函数countSetBits来判断一个数字是否是2的幂。
这是一个c++程序:
int countSetBits(int n)
{
int c = 0;
while(n)
{
c += 1;
n = n & (n-1);
}
return c;
}
bool isPowerOfTwo(int n)
{
return (countSetBits(n)==1);
}
int main()
{
int i, val[] = {0,1,2,3,4,5,15,16,22,32,38,64,70};
for(i=0; i<sizeof(val)/sizeof(val[0]); i++)
printf("Num:%d\tSet Bits:%d\t is power of two: %d\n",val[i], countSetBits(val[i]), isPowerOfTwo(val[i]));
return 0;
}
我们不需要显式地检查0是否是2的幂,因为它对0也返回False。
输出
Num:0 Set Bits:0 is power of two: 0
Num:1 Set Bits:1 is power of two: 1
Num:2 Set Bits:1 is power of two: 1
Num:3 Set Bits:2 is power of two: 0
Num:4 Set Bits:1 is power of two: 1
Num:5 Set Bits:2 is power of two: 0
Num:15 Set Bits:4 is power of two: 0
Num:16 Set Bits:1 is power of two: 1
Num:22 Set Bits:3 is power of two: 0
Num:32 Set Bits:1 is power of two: 1
Num:38 Set Bits:3 is power of two: 0
Num:64 Set Bits:1 is power of two: 1
Num:70 Set Bits:3 is power of two: 0