最近我一直在iPhone上玩一款名为《Scramble》的游戏。有些人可能知道这个游戏叫拼字游戏。从本质上讲,当游戏开始时,你会得到一个字母矩阵:

F X I E
A M L O
E W B X
A S T U

The goal of the game is to find as many words as you can that can be formed by chaining letters together. You can start with any letter, and all the letters that surround it are fair game, and then once you move on to the next letter, all the letters that surround that letter are fair game, except for any previously used letters. So in the grid above, for example, I could come up with the words LOB, TUX, SEA, FAME, etc. Words must be at least 3 characters, and no more than NxN characters, which would be 16 in this game but can vary in some implementations. While this game is fun and addictive, I am apparently not very good at it and I wanted to cheat a little bit by making a program that would give me the best possible words (the longer the word the more points you get).

(来源:boggled.org)

不幸的是,我不太擅长算法或它们的效率等等。我的第一次尝试使用一个像这样的字典(约2.3MB),并进行线性搜索,试图匹配字典条目的组合。这需要花费很长时间来找到可能的单词,因为你每轮只有2分钟的时间,这是不够的。

我很有兴趣看看是否有任何Stackoverflowers可以提出更有效的解决方案。我主要是在寻找使用三大p的解决方案:Python、PHP和Perl,尽管任何使用Java或c++的东西也很酷,因为速度是至关重要的。

目前的解决方案:

Adam Rosenfield, Python, ~20岁 John Fouhy, Python, ~3秒 Kent Fredric, Perl, ~1s Darius Bacon, Python, ~1s rvarcher, VB。净,~ 1 s Paolo Bergantino, PHP(实时链接),~5s(本地~2s)


当前回答

我也用Java解决了这个问题。我的实现有269行,非常容易使用。首先,您需要创建Boggler类的一个新实例,然后用网格作为参数调用solve函数。在我的电脑上加载5万个单词的字典大约需要100毫秒,它在大约10-20毫秒内找到单词。找到的单词存储在一个数组列表中,即foundWords。

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URISyntaxException;
import java.net.URL;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;

public class Boggler {
    private ArrayList<String> words = new ArrayList<String>();      
    private ArrayList<String> roundWords = new ArrayList<String>(); 
    private ArrayList<Word> foundWords = new ArrayList<Word>();     
    private char[][] letterGrid = new char[4][4];                   
    private String letters;                                         

    public Boggler() throws FileNotFoundException, IOException, URISyntaxException {
        long startTime = System.currentTimeMillis();

        URL path = GUI.class.getResource("words.txt");
        BufferedReader br = new BufferedReader(new InputStreamReader(new FileInputStream(new File(path.toURI()).getAbsolutePath()), "iso-8859-1"));
        String line;
        while((line = br.readLine()) != null) {
            if(line.length() < 3 || line.length() > 10) {
                continue;
            }

            this.words.add(line);
        }
    }

    public ArrayList<Word> getWords() {
        return this.foundWords;
    }

    public void solve(String letters) {
        this.letters = "";
        this.foundWords = new ArrayList<Word>();

        for(int i = 0; i < letters.length(); i++) {
            if(!this.letters.contains(letters.substring(i, i + 1))) {
                this.letters += letters.substring(i, i + 1);
            }
        }

        for(int i = 0; i < 4; i++) {
            for(int j = 0; j < 4; j++) {
                this.letterGrid[i][j] = letters.charAt(i * 4 + j);
            }
        }

        System.out.println(Arrays.deepToString(this.letterGrid));               

        this.roundWords = new ArrayList<String>();      
        String pattern = "[" + this.letters + "]+";     

        for(int i = 0; i < this.words.size(); i++) {

            if(this.words.get(i).matches(pattern)) {
                this.roundWords.add(this.words.get(i));
            }
        }

        for(int i = 0; i < this.roundWords.size(); i++) {
            Word word = checkForWord(this.roundWords.get(i));

            if(word != null) {
                System.out.println(word);
                this.foundWords.add(word);
            }
        }       
    }

    private Word checkForWord(String word) {
        char initial = word.charAt(0);
        ArrayList<LetterCoord> startPoints = new ArrayList<LetterCoord>();

        int x = 0;  
        int y = 0;
        for(char[] row: this.letterGrid) {
            x = 0;

            for(char letter: row) {
                if(initial == letter) {
                    startPoints.add(new LetterCoord(x, y));
                }

                x++;
            }

            y++;
        }

        ArrayList<LetterCoord> letterCoords = null;
        for(int initialTry = 0; initialTry < startPoints.size(); initialTry++) {
            letterCoords = new ArrayList<LetterCoord>();    

            x = startPoints.get(initialTry).getX(); 
            y = startPoints.get(initialTry).getY();

            LetterCoord initialCoord = new LetterCoord(x, y);
            letterCoords.add(initialCoord);

            letterLoop: for(int letterIndex = 1; letterIndex < word.length(); letterIndex++) {
                LetterCoord lastCoord = letterCoords.get(letterCoords.size() - 1);  
                char currentChar = word.charAt(letterIndex);                        

                ArrayList<LetterCoord> letterLocations = getNeighbours(currentChar, lastCoord.getX(), lastCoord.getY());

                if(letterLocations == null) {
                    return null;    
                }       

                for(int foundIndex = 0; foundIndex < letterLocations.size(); foundIndex++) {
                    if(letterIndex != word.length() - 1 && true == false) {
                        char nextChar = word.charAt(letterIndex + 1);
                        int lastX = letterCoords.get(letterCoords.size() - 1).getX();
                        int lastY = letterCoords.get(letterCoords.size() - 1).getY();

                        ArrayList<LetterCoord> possibleIndex = getNeighbours(nextChar, lastX, lastY);
                        if(possibleIndex != null) {
                            if(!letterCoords.contains(letterLocations.get(foundIndex))) {
                                letterCoords.add(letterLocations.get(foundIndex));
                            }
                            continue letterLoop;
                        } else {
                            return null;
                        }
                    } else {
                        if(!letterCoords.contains(letterLocations.get(foundIndex))) {
                            letterCoords.add(letterLocations.get(foundIndex));

                            continue letterLoop;
                        }
                    }
                }
            }

            if(letterCoords != null) {
                if(letterCoords.size() == word.length()) {
                    Word w = new Word(word);
                    w.addList(letterCoords);
                    return w;
                } else {
                    return null;
                }
            }
        }

        if(letterCoords != null) {
            Word foundWord = new Word(word);
            foundWord.addList(letterCoords);

            return foundWord;
        }

        return null;
    }

    public ArrayList<LetterCoord> getNeighbours(char letterToSearch, int x, int y) {
        ArrayList<LetterCoord> neighbours = new ArrayList<LetterCoord>();

        for(int _y = y - 1; _y <= y + 1; _y++) {
            for(int _x = x - 1; _x <= x + 1; _x++) {
                if(_x < 0 || _y < 0 || (_x == x && _y == y) || _y > 3 || _x > 3) {
                    continue;
                }

                if(this.letterGrid[_y][_x] == letterToSearch && !neighbours.contains(new LetterCoord(_x, _y))) {
                    neighbours.add(new LetterCoord(_x, _y));
                }
            }
        }

        if(neighbours.isEmpty()) {
            return null;
        } else {
            return neighbours;
        }
    }
}

class Word {
    private String word;    
    private ArrayList<LetterCoord> letterCoords = new ArrayList<LetterCoord>();

    public Word(String word) {
        this.word = word;
    }

    public boolean addCoords(int x, int y) {
        LetterCoord lc = new LetterCoord(x, y);

        if(!this.letterCoords.contains(lc)) {
            this.letterCoords.add(lc);

            return true;
        }

        return false;
    }

    public void addList(ArrayList<LetterCoord> letterCoords) {
        this.letterCoords = letterCoords;
    } 

    @Override
    public String toString() {
        String outputString = this.word + " ";
        for(int i = 0; i < letterCoords.size(); i++) {
            outputString += "(" + letterCoords.get(i).getX() + ", " + letterCoords.get(i).getY() + ") ";
        }

        return outputString;
    }

    public String getWord() {
        return this.word;
    }

    public ArrayList<LetterCoord> getList() {
        return this.letterCoords;
    }
}

class LetterCoord extends ArrayList {
    private int x;          
    private int y;          

    public LetterCoord(int x, int y) {
        this.x = x;
        this.y = y;
    }

    public int getX() {
        return this.x;
    }

    public int getY() {
        return this.y;
    }

    @Override
    public boolean equals(Object o) {
        if(!(o instanceof LetterCoord)) {
            return false;
        }

        LetterCoord lc = (LetterCoord) o;

        if(this.x == lc.getX() &&
                this.y == lc.getY()) {
            return true;
        }

        return false;
    }

    @Override
    public int hashCode() {
        int hash = 7;
        hash = 29 * hash + this.x;
        hash = 24 * hash + this.y;
        return hash;
    }
}

其他回答

令人惊讶的是,没有人尝试使用PHP版本。

这是John Fouhy的Python解决方案的PHP版本。

虽然我从其他人的答案中得到了一些建议,但这主要是抄袭约翰的。

$boggle = "fxie
           amlo
           ewbx
           astu";

$alphabet = str_split(str_replace(array("\n", " ", "\r"), "", strtolower($boggle)));
$rows = array_map('trim', explode("\n", $boggle));
$dictionary = file("C:/dict.txt");
$prefixes = array(''=>'');
$words = array();
$regex = '/[' . implode('', $alphabet) . ']{3,}$/S';
foreach($dictionary as $k=>$value) {
    $value = trim(strtolower($value));
    $length = strlen($value);
    if(preg_match($regex, $value)) {
        for($x = 0; $x < $length; $x++) {
            $letter = substr($value, 0, $x+1);
            if($letter == $value) {
                $words[$value] = 1;
            } else {
                $prefixes[$letter] = 1;
            }
        }
    }
}

$graph = array();
$chardict = array();
$positions = array();
$c = count($rows);
for($i = 0; $i < $c; $i++) {
    $l = strlen($rows[$i]);
    for($j = 0; $j < $l; $j++) {
        $chardict[$i.','.$j] = $rows[$i][$j];
        $children = array();
        $pos = array(-1,0,1);
        foreach($pos as $z) {
            $xCoord = $z + $i;
            if($xCoord < 0 || $xCoord >= count($rows)) {
                continue;
            }
            $len = strlen($rows[0]);
            foreach($pos as $w) {
                $yCoord = $j + $w;
                if(($yCoord < 0 || $yCoord >= $len) || ($z == 0 && $w == 0)) {
                    continue;
                }
                $children[] = array($xCoord, $yCoord);
            }
        }
        $graph['None'][] = array($i, $j);
        $graph[$i.','.$j] = $children;
    }
}

function to_word($chardict, $prefix) {
    $word = array();
    foreach($prefix as $v) {
        $word[] = $chardict[$v[0].','.$v[1]];
    }
    return implode("", $word);
}

function find_words($graph, $chardict, $position, $prefix, $prefixes, &$results, $words) {
    $word = to_word($chardict, $prefix);
    if(!isset($prefixes[$word])) return false;

    if(isset($words[$word])) {
        $results[] = $word;
    }

    foreach($graph[$position] as $child) {
        if(!in_array($child, $prefix)) {
            $newprefix = $prefix;
            $newprefix[] = $child;
            find_words($graph, $chardict, $child[0].','.$child[1], $newprefix, $prefixes, $results, $words);
        }
    }
}

$solution = array();
find_words($graph, $chardict, 'None', array(), $prefixes, $solution);
print_r($solution);

如果你想尝试的话,这里有一个实时链接。虽然在我的本地机器上需要大约2秒,但在我的web服务器上需要大约5秒。无论哪种情况,它都不是很快。尽管如此,它还是很可怕,所以我可以想象时间可以大大缩短。任何关于如何实现这一目标的建议都将不胜感激。PHP缺少元组,这使得坐标处理起来很奇怪,而且我无法理解到底发生了什么,这对我一点帮助都没有。

编辑:一些修复使它在本地少于1秒。

对VB不感兴趣?:)我忍不住了。我解决这个问题的方法不同于这里提出的许多解决方案。

我的时间是:

将字典和单词前缀加载到哈希表:.5到1秒。 找单词:平均不到10毫秒。

编辑:web主机服务器上的字典加载时间比我的家用电脑长1到1.5秒。

我不知道随着服务器负载的增加,时间会恶化到什么程度。

我把我的解决方案写成了。net的网页。myvrad.com/boggle

我用的是原题中提到的字典。

字母在单词中不能重复使用。只找到3个字符或以上的单词。

我使用所有唯一的单词前缀和单词的哈希表,而不是一个trie。我不知道什么是trie,所以我学到了一些东西。除了完整的单词之外,创建单词前缀列表的想法最终使我的时间减少到一个可观的数字。

阅读代码注释以获得更多详细信息。

代码如下:

Imports System.Collections.Generic
Imports System.IO

Partial Class boggle_Default

    'Bob Archer, 4/15/2009

    'To avoid using a 2 dimensional array in VB I'm not using typical X,Y
    'coordinate iteration to find paths.
    '
    'I have locked the code into a 4 by 4 grid laid out like so:
    ' abcd
    ' efgh
    ' ijkl
    ' mnop
    ' 
    'To find paths the code starts with a letter from a to p then
    'explores the paths available around it. If a neighboring letter
    'already exists in the path then we don't go there.
    '
    'Neighboring letters (grid points) are hard coded into
    'a Generic.Dictionary below.



    'Paths is a list of only valid Paths found. 
    'If a word prefix or word is not found the path is not
    'added and extending that path is terminated.
    Dim Paths As New Generic.List(Of String)

    'NeighborsOf. The keys are the letters a to p.
    'The value is a string of letters representing neighboring letters.
    'The string of neighboring letters is split and iterated later.
    Dim NeigborsOf As New Generic.Dictionary(Of String, String)

    'BoggleLetters. The keys are mapped to the lettered grid of a to p.
    'The values are what the user inputs on the page.
    Dim BoggleLetters As New Generic.Dictionary(Of String, String)

    'Used to store last postition of path. This will be a letter
    'from a to p.
    Dim LastPositionOfPath As String = ""

    'I found a HashTable was by far faster than a Generic.Dictionary 
    ' - about 10 times faster. This stores prefixes of words and words.
    'I determined 792773 was the number of words and unique prefixes that
    'will be generated from the dictionary file. This is a max number and
    'the final hashtable will not have that many.
    Dim HashTableOfPrefixesAndWords As New Hashtable(792773)

    'Stores words that are found.
    Dim FoundWords As New Generic.List(Of String)

    'Just to validate what the user enters in the grid.
    Dim ErrorFoundWithSubmittedLetters As Boolean = False

    Public Sub BuildAndTestPathsAndFindWords(ByVal ThisPath As String)
        'Word is the word correlating to the ThisPath parameter.
        'This path would be a series of letters from a to p.
        Dim Word As String = ""

        'The path is iterated through and a word based on the actual
        'letters in the Boggle grid is assembled.
        For i As Integer = 0 To ThisPath.Length - 1
            Word += Me.BoggleLetters(ThisPath.Substring(i, 1))
        Next

        'If my hashtable of word prefixes and words doesn't contain this Word
        'Then this isn't a word and any further extension of ThisPath will not
        'yield any words either. So exit sub to terminate exploring this path.
        If Not HashTableOfPrefixesAndWords.ContainsKey(Word) Then Exit Sub

        'The value of my hashtable is a boolean representing if the key if a word (true) or
        'just a prefix (false). If true and at least 3 letters long then yay! word found.
        If HashTableOfPrefixesAndWords(Word) AndAlso Word.Length > 2 Then Me.FoundWords.Add(Word)

        'If my List of Paths doesn't contain ThisPath then add it.
        'Remember only valid paths will make it this far. Paths not found
        'in the HashTableOfPrefixesAndWords cause this sub to exit above.
        If Not Paths.Contains(ThisPath) Then Paths.Add(ThisPath)

        'Examine the last letter of ThisPath. We are looking to extend the path
        'to our neighboring letters if any are still available.
        LastPositionOfPath = ThisPath.Substring(ThisPath.Length - 1, 1)

        'Loop through my list of neighboring letters (representing grid points).
        For Each Neighbor As String In Me.NeigborsOf(LastPositionOfPath).ToCharArray()
            'If I find a neighboring grid point that I haven't already used
            'in ThisPath then extend ThisPath and feed the new path into
            'this recursive function. (see recursive.)
            If Not ThisPath.Contains(Neighbor) Then Me.BuildAndTestPathsAndFindWords(ThisPath & Neighbor)
        Next
    End Sub

    Protected Sub ButtonBoggle_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles ButtonBoggle.Click

        'User has entered the 16 letters and clicked the go button.

        'Set up my Generic.Dictionary of grid points, I'm using letters a to p -
        'not an x,y grid system.  The values are neighboring points.
        NeigborsOf.Add("a", "bfe")
        NeigborsOf.Add("b", "cgfea")
        NeigborsOf.Add("c", "dhgfb")
        NeigborsOf.Add("d", "hgc")
        NeigborsOf.Add("e", "abfji")
        NeigborsOf.Add("f", "abcgkjie")
        NeigborsOf.Add("g", "bcdhlkjf")
        NeigborsOf.Add("h", "cdlkg")
        NeigborsOf.Add("i", "efjnm")
        NeigborsOf.Add("j", "efgkonmi")
        NeigborsOf.Add("k", "fghlponj")
        NeigborsOf.Add("l", "ghpok")
        NeigborsOf.Add("m", "ijn")
        NeigborsOf.Add("n", "ijkom")
        NeigborsOf.Add("o", "jklpn")
        NeigborsOf.Add("p", "klo")

        'Retrieve letters the user entered.
        BoggleLetters.Add("a", Me.TextBox1.Text.ToLower.Trim())
        BoggleLetters.Add("b", Me.TextBox2.Text.ToLower.Trim())
        BoggleLetters.Add("c", Me.TextBox3.Text.ToLower.Trim())
        BoggleLetters.Add("d", Me.TextBox4.Text.ToLower.Trim())
        BoggleLetters.Add("e", Me.TextBox5.Text.ToLower.Trim())
        BoggleLetters.Add("f", Me.TextBox6.Text.ToLower.Trim())
        BoggleLetters.Add("g", Me.TextBox7.Text.ToLower.Trim())
        BoggleLetters.Add("h", Me.TextBox8.Text.ToLower.Trim())
        BoggleLetters.Add("i", Me.TextBox9.Text.ToLower.Trim())
        BoggleLetters.Add("j", Me.TextBox10.Text.ToLower.Trim())
        BoggleLetters.Add("k", Me.TextBox11.Text.ToLower.Trim())
        BoggleLetters.Add("l", Me.TextBox12.Text.ToLower.Trim())
        BoggleLetters.Add("m", Me.TextBox13.Text.ToLower.Trim())
        BoggleLetters.Add("n", Me.TextBox14.Text.ToLower.Trim())
        BoggleLetters.Add("o", Me.TextBox15.Text.ToLower.Trim())
        BoggleLetters.Add("p", Me.TextBox16.Text.ToLower.Trim())

        'Validate user entered something with a length of 1 for all 16 textboxes.
        For Each S As String In BoggleLetters.Keys
            If BoggleLetters(S).Length <> 1 Then
                ErrorFoundWithSubmittedLetters = True
                Exit For
            End If
        Next

        'If input is not valid then...
        If ErrorFoundWithSubmittedLetters Then
            'Present error message.
        Else
            'Else assume we have 16 letters to work with and start finding words.
            Dim SB As New StringBuilder

            Dim Time As String = String.Format("{0}:{1}:{2}:{3}", Date.Now.Hour.ToString(), Date.Now.Minute.ToString(), Date.Now.Second.ToString(), Date.Now.Millisecond.ToString())

            Dim NumOfLetters As Integer = 0
            Dim Word As String = ""
            Dim TempWord As String = ""
            Dim Letter As String = ""
            Dim fr As StreamReader = Nothing
            fr = New System.IO.StreamReader(HttpContext.Current.Request.MapPath("~/boggle/dic.txt"))

            'First fill my hashtable with word prefixes and words.
            'HashTable(PrefixOrWordString, BooleanTrueIfWordFalseIfPrefix)
            While fr.Peek <> -1
                Word = fr.ReadLine.Trim()
                TempWord = ""
                For i As Integer = 0 To Word.Length - 1
                    Letter = Word.Substring(i, 1)
                    'This optimization helped quite a bit. Words in the dictionary that begin
                    'with letters that the user did not enter in the grid shouldn't go in my hashtable.
                    '
                    'I realize most of the solutions went with a Trie. I'd never heard of that before,
                    'which is one of the neat things about SO, seeing how others approach challenges
                    'and learning some best practices.
                    '
                    'However, I didn't code a Trie in my solution. I just have a hashtable with 
                    'all words in the dicitonary file and all possible prefixes for those words.
                    'A Trie might be faster but I'm not coding it now. I'm getting good times with this.
                    If i = 0 AndAlso Not BoggleLetters.ContainsValue(Letter) Then Continue While
                    TempWord += Letter
                    If Not HashTableOfPrefixesAndWords.ContainsKey(TempWord) Then
                        HashTableOfPrefixesAndWords.Add(TempWord, TempWord = Word)
                    End If
                Next
            End While

            SB.Append("Number of Word Prefixes and Words in Hashtable: " & HashTableOfPrefixesAndWords.Count.ToString())
            SB.Append("<br />")

            SB.Append("Loading Dictionary: " & Time & " - " & String.Format("{0}:{1}:{2}:{3}", Date.Now.Hour.ToString(), Date.Now.Minute.ToString(), Date.Now.Second.ToString(), Date.Now.Millisecond.ToString()))
            SB.Append("<br />")

            Time = String.Format("{0}:{1}:{2}:{3}", Date.Now.Hour.ToString(), Date.Now.Minute.ToString(), Date.Now.Second.ToString(), Date.Now.Millisecond.ToString())

            'This starts a path at each point on the grid an builds a path until 
            'the string of letters correlating to the path is not found in the hashtable
            'of word prefixes and words.
            Me.BuildAndTestPathsAndFindWords("a")
            Me.BuildAndTestPathsAndFindWords("b")
            Me.BuildAndTestPathsAndFindWords("c")
            Me.BuildAndTestPathsAndFindWords("d")
            Me.BuildAndTestPathsAndFindWords("e")
            Me.BuildAndTestPathsAndFindWords("f")
            Me.BuildAndTestPathsAndFindWords("g")
            Me.BuildAndTestPathsAndFindWords("h")
            Me.BuildAndTestPathsAndFindWords("i")
            Me.BuildAndTestPathsAndFindWords("j")
            Me.BuildAndTestPathsAndFindWords("k")
            Me.BuildAndTestPathsAndFindWords("l")
            Me.BuildAndTestPathsAndFindWords("m")
            Me.BuildAndTestPathsAndFindWords("n")
            Me.BuildAndTestPathsAndFindWords("o")
            Me.BuildAndTestPathsAndFindWords("p")

            SB.Append("Finding Words: " & Time & " - " & String.Format("{0}:{1}:{2}:{3}", Date.Now.Hour.ToString(), Date.Now.Minute.ToString(), Date.Now.Second.ToString(), Date.Now.Millisecond.ToString()))
            SB.Append("<br />")

            SB.Append("Num of words found: " & FoundWords.Count.ToString())
            SB.Append("<br />")
            SB.Append("<br />")

            FoundWords.Sort()
            SB.Append(String.Join("<br />", FoundWords.ToArray()))

            'Output results.
            Me.LiteralBoggleResults.Text = SB.ToString()
            Me.PanelBoggleResults.Visible = True

        End If

    End Sub

End Class

给定一个有N行M列的Boggle板,让我们假设如下:

N*M基本上大于可能单词的数量 N*M基本上大于可能的最长单词

在这些假设下,该解的复杂度为O(N*M)。

我认为比较这个示例板的运行时间在很多方面都没有重点,但是为了完整性,在我的现代MacBook Pro上,这个解决方案在0.2秒内完成。

这个解决方案将为语料库中的每个单词找到所有可能的路径。

#!/usr/bin/env ruby
# Example usage: ./boggle-solver --board "fxie amlo ewbx astu"

autoload :Matrix, 'matrix'
autoload :OptionParser, 'optparse'

DEFAULT_CORPUS_PATH = '/usr/share/dict/words'.freeze

# Functions

def filter_corpus(matrix, corpus, min_word_length)
  board_char_counts = Hash.new(0)
  matrix.each { |c| board_char_counts[c] += 1 }

  max_word_length = matrix.row_count * matrix.column_count
  boggleable_regex = /^[#{board_char_counts.keys.reduce(:+)}]{#{min_word_length},#{max_word_length}}$/
  corpus.select{ |w| w.match boggleable_regex }.select do |w|
    word_char_counts = Hash.new(0)
    w.each_char { |c| word_char_counts[c] += 1 }
    word_char_counts.all? { |c, count| board_char_counts[c] >= count }
  end
end

def neighbors(point, matrix)
  i, j = point
  ([i-1, 0].max .. [i+1, matrix.row_count-1].min).inject([]) do |r, new_i|
    ([j-1, 0].max .. [j+1, matrix.column_count-1].min).inject(r) do |r, new_j|
      neighbor = [new_i, new_j]
      neighbor.eql?(point) ? r : r << neighbor
    end
  end
end

def expand_path(path, word, matrix)
  return [path] if path.length == word.length

  next_char = word[path.length]
  viable_neighbors = neighbors(path[-1], matrix).select do |point|
    !path.include?(point) && matrix.element(*point).eql?(next_char)
  end

  viable_neighbors.inject([]) do |result, point|
    result + expand_path(path.dup << point, word, matrix)
  end
end

def find_paths(word, matrix)
  result = []
  matrix.each_with_index do |c, i, j|
    result += expand_path([[i, j]], word, matrix) if c.eql?(word[0])
  end
  result
end

def solve(matrix, corpus, min_word_length: 3)
  boggleable_corpus = filter_corpus(matrix, corpus, min_word_length)
  boggleable_corpus.inject({}) do |result, w|
    paths = find_paths(w, matrix)
    result[w] = paths unless paths.empty?
    result
  end
end

# Script

options = { corpus_path: DEFAULT_CORPUS_PATH }
option_parser = OptionParser.new do |opts|
  opts.banner = 'Usage: boggle-solver --board <value> [--corpus <value>]'

  opts.on('--board BOARD', String, 'The board (e.g. "fxi aml ewb ast")') do |b|
    options[:board] = b
  end

  opts.on('--corpus CORPUS_PATH', String, 'Corpus file path') do |c|
    options[:corpus_path] = c
  end

  opts.on_tail('-h', '--help', 'Shows usage') do
    STDOUT.puts opts
    exit
  end
end
option_parser.parse!

unless options[:board]
  STDERR.puts option_parser
  exit false
end

unless File.file? options[:corpus_path]
  STDERR.puts "No corpus exists - #{options[:corpus_path]}"
  exit false
end

rows = options[:board].downcase.scan(/\S+/).map{ |row| row.scan(/./) }

raw_corpus = File.readlines(options[:corpus_path])
corpus = raw_corpus.map{ |w| w.downcase.rstrip }.uniq.sort

solution = solve(Matrix.rows(rows), corpus)
solution.each_pair do |w, paths|
  STDOUT.puts w
  paths.each do |path|
    STDOUT.puts "\t" + path.map{ |point| point.inspect }.join(', ')
  end
end
STDOUT.puts "TOTAL: #{solution.count}"

对于字典加速,有一个通用的转换/过程可以大大减少提前的字典比较。

鉴于上面的网格只包含16个字符,其中一些字符是重复的,您可以通过简单地过滤掉具有不可获取字符的条目来大大减少字典中的总键数。

我认为这是明显的优化,但看到没有人这么做,我就提出来了。

在输入过程中,它将我的字典从20万个键减少到只有2000个键。这至少减少了内存开销,并且这肯定会映射到某个地方的速度增加,因为内存不是无限快的。

Perl实现

我的实现有点头重脚轻,因为我重视能够知道每个提取的字符串的确切路径,而不仅仅是其中的有效性。

我也有一些适应在那里,理论上允许一个网格中有洞的功能,网格有不同大小的线(假设你得到了正确的输入,它以某种方式对齐)。

早期筛选器是我的应用程序中最重要的瓶颈,正如之前怀疑的那样,注释掉了一行从1.5s膨胀到7.5s的代码。

在执行时,它似乎认为所有的个位数都在他们自己的有效单词上,但我很确定这是由于字典文件的工作方式。

它有点臃肿,但至少我重用了cpan中的Tree::Trie

其中有些部分是受到现有实现的启发,有些是我已经想到的。

建设性的批评和改进的方法欢迎(/我注意到他从来没有在CPAN上搜索过一个拼字游戏解决器,但这更有趣)

新标准更新

#!/usr/bin/perl 

use strict;
use warnings;

{

  # this package manages a given path through the grid.
  # Its an array of matrix-nodes in-order with
  # Convenience functions for pretty-printing the paths
  # and for extending paths as new paths.

  # Usage:
  # my $p = Prefix->new(path=>[ $startnode ]);
  # my $c = $p->child( $extensionNode );
  # print $c->current_word ;

  package Prefix;
  use Moose;

  has path => (
      isa     => 'ArrayRef[MatrixNode]',
      is      => 'rw',
      default => sub { [] },
  );
  has current_word => (
      isa        => 'Str',
      is         => 'rw',
      lazy_build => 1,
  );

  # Create a clone of this object
  # with a longer path

  # $o->child( $successive-node-on-graph );

  sub child {
      my $self    = shift;
      my $newNode = shift;
      my $f       = Prefix->new();

      # Have to do this manually or other recorded paths get modified
      push @{ $f->{path} }, @{ $self->{path} }, $newNode;
      return $f;
  }

  # Traverses $o->path left-to-right to get the string it represents.

  sub _build_current_word {
      my $self = shift;
      return join q{}, map { $_->{value} } @{ $self->{path} };
  }

  # Returns  the rightmost node on this path

  sub tail {
      my $self = shift;
      return $self->{path}->[-1];
  }

  # pretty-format $o->path

  sub pp_path {
      my $self = shift;
      my @path =
        map { '[' . $_->{x_position} . ',' . $_->{y_position} . ']' }
        @{ $self->{path} };
      return "[" . join( ",", @path ) . "]";
  }

  # pretty-format $o
  sub pp {
      my $self = shift;
      return $self->current_word . ' => ' . $self->pp_path;
  }

  __PACKAGE__->meta->make_immutable;
}

{

  # Basic package for tracking node data
  # without having to look on the grid.
  # I could have just used an array or a hash, but that got ugly.

# Once the matrix is up and running it doesn't really care so much about rows/columns,
# Its just a sea of points and each point has adjacent points.
# Relative positioning is only really useful to map it back to userspace

  package MatrixNode;
  use Moose;

  has x_position => ( isa => 'Int', is => 'rw', required => 1 );
  has y_position => ( isa => 'Int', is => 'rw', required => 1 );
  has value      => ( isa => 'Str', is => 'rw', required => 1 );
  has siblings   => (
      isa     => 'ArrayRef[MatrixNode]',
      is      => 'rw',
      default => sub { [] }
  );

# Its not implicitly uni-directional joins. It would be more effient in therory
# to make the link go both ways at the same time, but thats too hard to program around.
# and besides, this isn't slow enough to bother caring about.

  sub add_sibling {
      my $self    = shift;
      my $sibling = shift;
      push @{ $self->siblings }, $sibling;
  }

  # Convenience method to derive a path starting at this node

  sub to_path {
      my $self = shift;
      return Prefix->new( path => [$self] );
  }
  __PACKAGE__->meta->make_immutable;

}

{

  package Matrix;
  use Moose;

  has rows => (
      isa     => 'ArrayRef',
      is      => 'rw',
      default => sub { [] },
  );

  has regex => (
      isa        => 'Regexp',
      is         => 'rw',
      lazy_build => 1,
  );

  has cells => (
      isa        => 'ArrayRef',
      is         => 'rw',
      lazy_build => 1,
  );

  sub add_row {
      my $self = shift;
      push @{ $self->rows }, [@_];
  }

  # Most of these functions from here down are just builder functions,
  # or utilities to help build things.
  # Some just broken out to make it easier for me to process.
  # All thats really useful is add_row
  # The rest will generally be computed, stored, and ready to go
  # from ->cells by the time either ->cells or ->regex are called.

  # traverse all cells and make a regex that covers them.
  sub _build_regex {
      my $self  = shift;
      my $chars = q{};
      for my $cell ( @{ $self->cells } ) {
          $chars .= $cell->value();
      }
      $chars = "[^$chars]";
      return qr/$chars/i;
  }

  # convert a plain cell ( ie: [x][y] = 0 )
  # to an intelligent cell ie: [x][y] = object( x, y )
  # we only really keep them in this format temporarily
  # so we can go through and tie in neighbouring information.
  # after the neigbouring is done, the grid should be considered inoperative.

  sub _convert {
      my $self = shift;
      my $x    = shift;
      my $y    = shift;
      my $v    = $self->_read( $x, $y );
      my $n    = MatrixNode->new(
          x_position => $x,
          y_position => $y,
          value      => $v,
      );
      $self->_write( $x, $y, $n );
      return $n;
  }

# go through the rows/collums presently available and freeze them into objects.

  sub _build_cells {
      my $self = shift;
      my @out  = ();
      my @rows = @{ $self->{rows} };
      for my $x ( 0 .. $#rows ) {
          next unless defined $self->{rows}->[$x];
          my @col = @{ $self->{rows}->[$x] };
          for my $y ( 0 .. $#col ) {
              next unless defined $self->{rows}->[$x]->[$y];
              push @out, $self->_convert( $x, $y );
          }
      }
      for my $c (@out) {
          for my $n ( $self->_neighbours( $c->x_position, $c->y_position ) ) {
              $c->add_sibling( $self->{rows}->[ $n->[0] ]->[ $n->[1] ] );
          }
      }
      return \@out;
  }

  # given x,y , return array of points that refer to valid neighbours.
  sub _neighbours {
      my $self = shift;
      my $x    = shift;
      my $y    = shift;
      my @out  = ();
      for my $sx ( -1, 0, 1 ) {
          next if $sx + $x < 0;
          next if not defined $self->{rows}->[ $sx + $x ];
          for my $sy ( -1, 0, 1 ) {
              next if $sx == 0 && $sy == 0;
              next if $sy + $y < 0;
              next if not defined $self->{rows}->[ $sx + $x ]->[ $sy + $y ];
              push @out, [ $sx + $x, $sy + $y ];
          }
      }
      return @out;
  }

  sub _has_row {
      my $self = shift;
      my $x    = shift;
      return defined $self->{rows}->[$x];
  }

  sub _has_cell {
      my $self = shift;
      my $x    = shift;
      my $y    = shift;
      return defined $self->{rows}->[$x]->[$y];
  }

  sub _read {
      my $self = shift;
      my $x    = shift;
      my $y    = shift;
      return $self->{rows}->[$x]->[$y];
  }

  sub _write {
      my $self = shift;
      my $x    = shift;
      my $y    = shift;
      my $v    = shift;
      $self->{rows}->[$x]->[$y] = $v;
      return $v;
  }

  __PACKAGE__->meta->make_immutable;
}

use Tree::Trie;

sub readDict {
  my $fn = shift;
  my $re = shift;
  my $d  = Tree::Trie->new();

  # Dictionary Loading
  open my $fh, '<', $fn;
  while ( my $line = <$fh> ) {
      chomp($line);

 # Commenting the next line makes it go from 1.5 seconds to 7.5 seconds. EPIC.
      next if $line =~ $re;    # Early Filter
      $d->add( uc($line) );
  }
  return $d;
}

sub traverseGraph {
  my $d     = shift;
  my $m     = shift;
  my $min   = shift;
  my $max   = shift;
  my @words = ();

  # Inject all grid nodes into the processing queue.

  my @queue =
    grep { $d->lookup( $_->current_word ) }
    map  { $_->to_path } @{ $m->cells };

  while (@queue) {
      my $item = shift @queue;

      # put the dictionary into "exact match" mode.

      $d->deepsearch('exact');

      my $cword = $item->current_word;
      my $l     = length($cword);

      if ( $l >= $min && $d->lookup($cword) ) {
          push @words,
            $item;    # push current path into "words" if it exactly matches.
      }
      next if $l > $max;

      # put the dictionary into "is-a-prefix" mode.
      $d->deepsearch('boolean');

    siblingloop: foreach my $sibling ( @{ $item->tail->siblings } ) {
          foreach my $visited ( @{ $item->{path} } ) {
              next siblingloop if $sibling == $visited;
          }

          # given path y , iterate for all its end points
          my $subpath = $item->child($sibling);

          # create a new path for each end-point
          if ( $d->lookup( $subpath->current_word ) ) {

             # if the new path is a prefix, add it to the bottom of the queue.
              push @queue, $subpath;
          }
      }
  }
  return \@words;
}

sub setup_predetermined { 
  my $m = shift; 
  my $gameNo = shift;
  if( $gameNo == 0 ){
      $m->add_row(qw( F X I E ));
      $m->add_row(qw( A M L O ));
      $m->add_row(qw( E W B X ));
      $m->add_row(qw( A S T U ));
      return $m;
  }
  if( $gameNo == 1 ){
      $m->add_row(qw( D G H I ));
      $m->add_row(qw( K L P S ));
      $m->add_row(qw( Y E U T ));
      $m->add_row(qw( E O R N ));
      return $m;
  }
}
sub setup_random { 
  my $m = shift; 
  my $seed = shift;
  srand $seed;
  my @letters = 'A' .. 'Z' ; 
  for( 1 .. 4 ){ 
      my @r = ();
      for( 1 .. 4 ){
          push @r , $letters[int(rand(25))];
      }
      $m->add_row( @r );
  }
}

# Here is where the real work starts.

my $m = Matrix->new();
setup_predetermined( $m, 0 );
#setup_random( $m, 5 );

my $d = readDict( 'dict.txt', $m->regex );
my $c = scalar @{ $m->cells };    # get the max, as per spec

print join ",\n", map { $_->pp } @{
  traverseGraph( $d, $m, 3, $c ) ;
};

Arch/执行信息进行比较:

model name      : Intel(R) Core(TM)2 Duo CPU     T9300  @ 2.50GHz
cache size      : 6144 KB
Memory usage summary: heap total: 77057577, heap peak: 11446200, stack peak: 26448
       total calls   total memory   failed calls
 malloc|     947212       68763684              0
realloc|      11191        1045641              0  (nomove:9063, dec:4731, free:0)
 calloc|     121001        7248252              0
   free|     973159       65854762

Histogram for block sizes:
  0-15         392633  36% ==================================================
 16-31          43530   4% =====
 32-47          50048   4% ======
 48-63          70701   6% =========
 64-79          18831   1% ==
 80-95          19271   1% ==
 96-111        238398  22% ==============================
112-127          3007  <1% 
128-143        236727  21% ==============================

关于正则表达式优化的更多嘟囔

我使用的正则表达式优化对于多解字典是无用的,而对于多解字典,您将需要一个完整的字典,而不是一个预先修整过的字典。

然而,也就是说,对于一次性解决,它真的很快。(Perl正则表达式是在C!:))

以下是一些不同的代码添加:

sub readDict_nofilter {
  my $fn = shift;
  my $re = shift;
  my $d  = Tree::Trie->new();

  # Dictionary Loading
  open my $fh, '<', $fn;
  while ( my $line = <$fh> ) {
      chomp($line);
      $d->add( uc($line) );
  }
  return $d;
}

sub benchmark_io { 
  use Benchmark qw( cmpthese :hireswallclock );
   # generate a random 16 character string 
   # to simulate there being an input grid. 
  my $regexen = sub { 
      my @letters = 'A' .. 'Z' ; 
      my @lo = ();
      for( 1..16 ){ 
          push @lo , $_ ; 
      }
      my $c  = join '', @lo;
      $c = "[^$c]";
      return qr/$c/i;
  };
  cmpthese( 200 , { 
      filtered => sub { 
          readDict('dict.txt', $regexen->() );
      }, 
      unfiltered => sub {
          readDict_nofilter('dict.txt');
      }
  });
}
           s/iter unfiltered   filtered
unfiltered   8.16         --       -94%
filtered    0.464      1658%         --

Ps: 8.16 * 200 = 27分钟。

该解决方案还提供了在给定的板中搜索的方向

一件事:

1. Uses trie to save all the word in the english to fasten the search
2. The uses DFS to search the words in Boggle

输出:

Found "pic" directions from (4,0)(p) go  → →
Found "pick" directions from (4,0)(p) go  → → ↑
Found "pickman" directions from (4,0)(p) go  → → ↑ ↑ ↖ ↑
Found "picket" directions from (4,0)(p) go  → → ↑ ↗ ↖
Found "picked" directions from (4,0)(p) go  → → ↑ ↗ ↘
Found "pickle" directions from (4,0)(p) go  → → ↑ ↘ →

代码:

from collections import defaultdict
from nltk.corpus import words
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize

english_words = words.words()

# If you wan to remove stop words
# stop_words = set(stopwords.words('english'))
# english_words = [w for w in english_words if w not in stop_words]

boggle = [
    ['c', 'n', 't', 's', 's'],
    ['d', 'a', 't', 'i', 'n'],
    ['o', 'o', 'm', 'e', 'l'],
    ['s', 'i', 'k', 'n', 'd'],
    ['p', 'i', 'c', 'l', 'e']
]

# Instead of X and Y co-ordinates
# better to use Row and column
lenc = len(boggle[0])
lenr = len(boggle)

# Initialize trie datastructure
trie_node = {'valid': False, 'next': {}}

# lets get the delta to find all the nighbors
neighbors_delta = [
    (-1,-1, "↖"),
    (-1, 0, "↑"),
    (-1, 1, "↗"),
    (0, -1, "←"),
    (0,  1, "→"),
    (1, -1, "↙"),
    (1,  0, "↓"),
    (1,  1, "↘"),
]


def gen_trie(word, node):
    """udpates the trie datastructure using the given word"""
    if not word:
        return

    if word[0] not in node:
        node[word[0]] = {'valid': len(word) == 1, 'next': {}}

    # recursively build trie
    gen_trie(word[1:], node[word[0]])


def build_trie(words, trie):
    """Builds trie data structure from the list of words given"""
    for word in words:
        gen_trie(word, trie)
    return trie


def get_neighbors(r, c):
    """Returns the neighbors for a given co-ordinates"""
    n = []
    for neigh in neighbors_delta:
        new_r = r + neigh[0]
        new_c = c + neigh[1]

        if (new_r >= lenr) or (new_c >= lenc) or (new_r < 0) or (new_c < 0):
            continue
        n.append((new_r, new_c, neigh[2]))
    return n


def dfs(r, c, visited, trie, now_word, direction):
    """Scan the graph using DFS"""
    if (r, c) in visited:
        return

    letter = boggle[r][c]
    visited.append((r, c))

    if letter in trie:
        now_word += letter

        if trie[letter]['valid']:
            print('Found "{}" {}'.format(now_word, direction))

        neighbors = get_neighbors(r, c)
        for n in neighbors:
            dfs(n[0], n[1], visited[::], trie[letter], now_word, direction + " " + n[2])


def main(trie_node):
    """Initiate the search for words in boggle"""
    trie_node = build_trie(english_words, trie_node)

    # print the board
    print("Given board")
    for i in range(lenr):print (boggle[i])
    print ('\n')

    for r in range(lenr):
        for c in range(lenc):
            letter = boggle[r][c]
            dfs(r, c, [], trie_node, '', 'directions from ({},{})({}) go '.format(r, c, letter))


if __name__ == '__main__':
    main(trie_node)