我如何打印格式化的NumPy数组以类似于这样的方式:
x = 1.23456
print('%.3f' % x)
如果我想打印numpy。Ndarray的浮点数,它打印几个小数,通常是“科学”格式,即使对于低维数组也很难读取。然而,numpy。Ndarray显然必须被打印为字符串,即%s。有解决办法吗?
我如何打印格式化的NumPy数组以类似于这样的方式:
x = 1.23456
print('%.3f' % x)
如果我想打印numpy。Ndarray的浮点数,它打印几个小数,通常是“科学”格式,即使对于低维数组也很难读取。然而,numpy。Ndarray显然必须被打印为字符串,即%s。有解决办法吗?
当前回答
我经常希望不同的列具有不同的格式。以下是我如何通过将NumPy数组(切片)转换为元组来打印一个简单的2D数组:
import numpy as np
dat = np.random.random((10,11))*100 # Array of random values between 0 and 100
print(dat) # Lines get truncated and are hard to read
for i in range(10):
print((4*"%6.2f"+7*"%9.4f") % tuple(dat[i,:]))
其他回答
Unutbu给出了一个非常完整的答案(他们也从我这里得到了+1),但这里有一个低科技的替代方案:
>>> x=np.random.randn(5)
>>> x
array([ 0.25276524, 2.28334499, -1.88221637, 0.69949927, 1.0285625 ])
>>> ['{:.2f}'.format(i) for i in x]
['0.25', '2.28', '-1.88', '0.70', '1.03']
作为函数(使用format()语法进行格式化):
def ndprint(a, format_string ='{0:.2f}'):
print [format_string.format(v,i) for i,v in enumerate(a)]
用法:
>>> ndprint(x)
['0.25', '2.28', '-1.88', '0.70', '1.03']
>>> ndprint(x, '{:10.4e}')
['2.5277e-01', '2.2833e+00', '-1.8822e+00', '6.9950e-01', '1.0286e+00']
>>> ndprint(x, '{:.8g}')
['0.25276524', '2.283345', '-1.8822164', '0.69949927', '1.0285625']
数组的索引可以在格式字符串中访问:
>>> ndprint(x, 'Element[{1:d}]={0:.2f}')
['Element[0]=0.25', 'Element[1]=2.28', 'Element[2]=-1.88', 'Element[3]=0.70', 'Element[4]=1.03']
这是我用的,它很简单:
print(np.vectorize("%.2f".__mod__)(sparse))
还有一种选择是使用十进制模块:
import numpy as np
from decimal import *
arr = np.array([ 56.83, 385.3 , 6.65, 126.63, 85.76, 192.72, 112.81, 10.55])
arr2 = [str(Decimal(i).quantize(Decimal('.01'))) for i in arr]
# ['56.83', '385.30', '6.65', '126.63', '85.76', '192.72', '112.81', '10.55']
我发现在使用循环显示列表或数组时,通常的浮点格式{:9.5f}工作正常——抑制小值e符号。但是,当格式化程序在单个print语句中包含多个项时,这种格式有时无法抑制其e符号。例如:
import numpy as np
np.set_printoptions(suppress=True)
a3 = 4E-3
a4 = 4E-4
a5 = 4E-5
a6 = 4E-6
a7 = 4E-7
a8 = 4E-8
#--first, display separate numbers-----------
print('Case 3: a3, a4, a5: {:9.5f}{:9.5f}{:9.5f}'.format(a3,a4,a5))
print('Case 4: a3, a4, a5, a6: {:9.5f}{:9.5f}{:9.5f}{:9.5}'.format(a3,a4,a5,a6))
print('Case 5: a3, a4, a5, a6, a7: {:9.5f}{:9.5f}{:9.5f}{:9.5}{:9.5f}'.format(a3,a4,a5,a6,a7))
print('Case 6: a3, a4, a5, a6, a7, a8: {:9.5f}{:9.5f}{:9.5f}{:9.5f}{:9.5}{:9.5f}'.format(a3,a4,a5,a6,a7,a8))
#---second, display a list using a loop----------
myList = [a3,a4,a5,a6,a7,a8]
print('List 6: a3, a4, a5, a6, a7, a8: ', end='')
for x in myList:
print('{:9.5f}'.format(x), end='')
print()
#---third, display a numpy array using a loop------------
myArray = np.array(myList)
print('Array 6: a3, a4, a5, a6, a7, a8: ', end='')
for x in myArray:
print('{:9.5f}'.format(x), end='')
print()
我的结果显示了情况4、5和6中的错误:
Case 3: a3, a4, a5: 0.00400 0.00040 0.00004
Case 4: a3, a4, a5, a6: 0.00400 0.00040 0.00004 4e-06
Case 5: a3, a4, a5, a6, a7: 0.00400 0.00040 0.00004 4e-06 0.00000
Case 6: a3, a4, a5, a6, a7, a8: 0.00400 0.00040 0.00004 0.00000 4e-07 0.00000
List 6: a3, a4, a5, a6, a7, a8: 0.00400 0.00040 0.00004 0.00000 0.00000 0.00000
Array 6: a3, a4, a5, a6, a7, a8: 0.00400 0.00040 0.00004 0.00000 0.00000 0.00000
我对此没有解释,因此我总是使用循环来浮动多个值的输出。
用np。Array_str只对单个打印语句应用格式化。它给出了np的一个子集。set_printoptions的功能。
例如:
In [27]: x = np.array([[1.1, 0.9, 1e-6]] * 3)
In [28]: print(x)
[[ 1.10000000e+00 9.00000000e-01 1.00000000e-06]
[ 1.10000000e+00 9.00000000e-01 1.00000000e-06]
[ 1.10000000e+00 9.00000000e-01 1.00000000e-06]]
In [29]: print(np.array_str(x, precision=2))
[[ 1.10e+00 9.00e-01 1.00e-06]
[ 1.10e+00 9.00e-01 1.00e-06]
[ 1.10e+00 9.00e-01 1.00e-06]]
In [30]: print(np.array_str(x, precision=2, suppress_small=True))
[[ 1.1 0.9 0. ]
[ 1.1 0.9 0. ]
[ 1.1 0.9 0. ]]