我如何打印格式化的NumPy数组以类似于这样的方式:

x = 1.23456
print('%.3f' % x)

如果我想打印numpy。Ndarray的浮点数,它打印几个小数,通常是“科学”格式,即使对于低维数组也很难读取。然而,numpy。Ndarray显然必须被打印为字符串,即%s。有解决办法吗?


当前回答

很惊讶没有看到周围的方法提到-意思是没有搞乱打印选项。

import numpy as np

x = np.random.random([5,5])
print(np.around(x,decimals=3))

Output:
[[0.475 0.239 0.183 0.991 0.171]
 [0.231 0.188 0.235 0.335 0.049]
 [0.87  0.212 0.219 0.9   0.3  ]
 [0.628 0.791 0.409 0.5   0.319]
 [0.614 0.84  0.812 0.4   0.307]]

其他回答

numpy.char.mod也可能有用,这取决于应用程序的细节,例如:numpy.char.mod('Value=%4.2f', numpy.char.mod)。arange(5, 10, 0.1))将返回一个包含元素"Value=5.00", "Value=5.10"等的字符串数组(作为一个有点做作的例子)。

Numpy 1.15(待定发布日期)将包含一个上下文管理器,用于在本地设置打印选项。这意味着下面的工作将与接受的答案(由unutbu和Neil G)中的相应示例相同,而无需编写自己的上下文管理器。举个例子:

x = np.random.random(10)
with np.printoptions(precision=3, suppress=True):
    print(x)
    # [ 0.073  0.461  0.689  0.754  0.624  0.901  0.049  0.582  0.557  0.348]

我发现在使用循环显示列表或数组时,通常的浮点格式{:9.5f}工作正常——抑制小值e符号。但是,当格式化程序在单个print语句中包含多个项时,这种格式有时无法抑制其e符号。例如:

import numpy as np
np.set_printoptions(suppress=True)
a3 = 4E-3
a4 = 4E-4
a5 = 4E-5
a6 = 4E-6
a7 = 4E-7
a8 = 4E-8
#--first, display separate numbers-----------
print('Case 3:  a3, a4, a5:             {:9.5f}{:9.5f}{:9.5f}'.format(a3,a4,a5))
print('Case 4:  a3, a4, a5, a6:         {:9.5f}{:9.5f}{:9.5f}{:9.5}'.format(a3,a4,a5,a6))
print('Case 5:  a3, a4, a5, a6, a7:     {:9.5f}{:9.5f}{:9.5f}{:9.5}{:9.5f}'.format(a3,a4,a5,a6,a7))
print('Case 6:  a3, a4, a5, a6, a7, a8: {:9.5f}{:9.5f}{:9.5f}{:9.5f}{:9.5}{:9.5f}'.format(a3,a4,a5,a6,a7,a8))
#---second, display a list using a loop----------
myList = [a3,a4,a5,a6,a7,a8]
print('List 6:  a3, a4, a5, a6, a7, a8: ', end='')
for x in myList: 
    print('{:9.5f}'.format(x), end='')
print()
#---third, display a numpy array using a loop------------
myArray = np.array(myList)
print('Array 6: a3, a4, a5, a6, a7, a8: ', end='')
for x in myArray:
    print('{:9.5f}'.format(x), end='')
print()

我的结果显示了情况4、5和6中的错误:

Case 3:  a3, a4, a5:               0.00400  0.00040  0.00004
Case 4:  a3, a4, a5, a6:           0.00400  0.00040  0.00004    4e-06
Case 5:  a3, a4, a5, a6, a7:       0.00400  0.00040  0.00004    4e-06  0.00000
Case 6:  a3, a4, a5, a6, a7, a8:   0.00400  0.00040  0.00004  0.00000    4e-07  0.00000
List 6:  a3, a4, a5, a6, a7, a8:   0.00400  0.00040  0.00004  0.00000  0.00000  0.00000
Array 6: a3, a4, a5, a6, a7, a8:   0.00400  0.00040  0.00004  0.00000  0.00000  0.00000

我对此没有解释,因此我总是使用循环来浮动多个值的输出。

还有一种选择是使用十进制模块:

import numpy as np
from decimal import *

arr = np.array([  56.83,  385.3 ,    6.65,  126.63,   85.76,  192.72,  112.81, 10.55])
arr2 = [str(Decimal(i).quantize(Decimal('.01'))) for i in arr]

# ['56.83', '385.30', '6.65', '126.63', '85.76', '192.72', '112.81', '10.55']

这是我用的,它很简单:

print(np.vectorize("%.2f".__mod__)(sparse))