我有一个具有以下列名的熊猫数据框架:
Result1, Test1, Result2, Test2, Result3, Test3等…
我想删除所有名称包含单词“Test”的列。这些列的数量不是静态的,而是取决于前面的函数。
我该怎么做呢?
我有一个具有以下列名的熊猫数据框架:
Result1, Test1, Result2, Test2, Result3, Test3等…
我想删除所有名称包含单词“Test”的列。这些列的数量不是静态的,而是取决于前面的函数。
我该怎么做呢?
当前回答
import pandas as pd
import numpy as np
array=np.random.random((2,4))
df=pd.DataFrame(array, columns=('Test1', 'toto', 'test2', 'riri'))
print df
Test1 toto test2 riri
0 0.923249 0.572528 0.845464 0.144891
1 0.020438 0.332540 0.144455 0.741412
cols = [c for c in df.columns if c.lower()[:4] != 'test']
df=df[cols]
print df
toto riri
0 0.572528 0.144891
1 0.332540 0.741412
其他回答
使用正则表达式匹配所有不包含不需要的单词的列:
df = df.filter(regex='^((?!badword).)*$')
这可以在一行中完成:
df = df.drop(df.filter(regex='Test').columns, axis=1)
该方法在适当的位置执行所有操作。许多其他答案会复制,效率不高:
df.drop(df.columns[df.columns.str.contains('Test')], axis=1, inplace=True)
这里有一种方法:
df = df[df.columns.drop(list(df.filter(regex='Test')))]
更便宜,更快,习惯用法:str.contains
在最近版本的pandas中,可以在索引和列上使用字符串方法。这里str.startswith似乎很合适。
删除以给定子字符串开头的所有列:
df.columns.str.startswith('Test')
# array([ True, False, False, False])
df.loc[:,~df.columns.str.startswith('Test')]
toto test2 riri
0 x x x
1 x x x
对于大小写不敏感的匹配,你可以使用基于正则表达式的匹配str.contains和一个SOL锚:
df.columns.str.contains('^test', case=False)
# array([ True, False, True, False])
df.loc[:,~df.columns.str.contains('^test', case=False)]
toto riri
0 x x
1 x x
如果混合类型是可能的,指定na=False。