Python中的“iterable”、“iterator”和“iteration”是什么?它们是如何定义的?


当前回答

在处理可迭代对象和迭代器之前,决定可迭代对象和迭代器的主要因素是序列

序列:序列是数据的集合

Iterable: Iterable是支持__iter__方法的序列类型对象。

Iter方法:Iter方法以序列为输入,创建一个对象,称为迭代器

迭代器:迭代器是调用next方法和横向遍历序列的对象。在调用下一个方法时,它返回当前遍历的对象。

例子:

x=[1,2,3,4]

X是一个由数据集合组成的序列

y=iter(x)

在调用iter(x)时,只有当x对象有iter方法时,它才会返回一个迭代器,否则会引发异常。如果返回迭代器,则y的赋值如下:

y=[1,2,3,4]

因为y是一个迭代器,所以它支持next()方法

在调用next方法时,它逐个返回列表中的各个元素。

返回序列的最后一个元素后,如果再次调用下一个方法,将引发StopIteration错误

例子:

>>> y.next()
1
>>> y.next()
2
>>> y.next()
3
>>> y.next()
4
>>> y.next()
StopIteration

其他回答

对我来说,Python的glossery对这些问题最有帮助,例如对于iterable,它说:

每次能够返回一个成员的对象。可迭代对象的例子包括所有序列类型(如list、str和tuple)和一些非序列类型,如dict、文件对象,以及使用iter()方法或使用实现sequence语义的getitem()方法定义的任何类的对象。

Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(), …). When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to call iter() or deal with iterator objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and generator.

迭代器是实现iter和next方法的对象。如果定义了这些方法,则可以使用for循环或推导式。

class Squares:
    def __init__(self, length):
        self.length = length
        self.i = 0
        
    def __iter__(self):
        print('calling __iter__') # this will be called first and only once
        return self
    
    def __next__(self): 
        print('calling __next__') # this will be called for each iteration
        if self.i >= self.length:
            raise StopIteration
        else:
            result = self.i ** 2
            self.i += 1
            return result

迭代器会耗尽。这意味着在你遍历项目之后,你不能重复,你必须创建一个新对象。假设你有一个类,它包含cities属性,你想要遍历。

class Cities:
    def __init__(self):
        self._cities = ['Brooklyn', 'Manhattan', 'Prag', 'Madrid', 'London']
        self._index = 0
    
    def __iter__(self):
        return self
    
    def __next__(self):
        if self._index >= len(self._cities):
            raise StopIteration
        else:
            item = self._cities[self._index]
            self._index += 1
            return item

类Cities的实例是一个迭代器。然而,如果你想在城市上重复,你必须创建一个新对象,这是一个昂贵的操作。你可以把这个类分成两个类:一个返回城市,第二个返回一个迭代器,它将城市作为初始参数。

class Cities:
    def __init__(self):
        self._cities = ['New York', 'Newark', 'Istanbul', 'London']        
    def __len__(self):
        return len(self._cities)



class CityIterator:
    def __init__(self, city_obj):
        # cities is an instance of Cities
        self._city_obj = city_obj
        self._index = 0
        
    def __iter__(self):
        return self
    
    def __next__(self):
        if self._index >= len(self._city_obj):
            raise StopIteration
        else:
            item = self._city_obj._cities[self._index]
            self._index += 1
            return item

现在如果我们需要创建一个新的迭代器,我们不需要再次创建数据,也就是城市。我们创建了cities对象并将其传递给迭代器。但我们仍在做额外的工作。我们可以通过只创建一个类来实现这一点。

Iterable是一个实现Iterable协议的Python对象。它只需要返回一个迭代器对象的新实例的__iter__()。

class Cities:
    def __init__(self):
        self._cities = ['New York', 'Newark', 'Istanbul', 'Paris']
        
    def __len__(self):
        return len(self._cities)
    
    def __iter__(self):
        return self.CityIterator(self)
    
    class CityIterator:
        def __init__(self, city_obj):
            self._city_obj = city_obj
            self._index = 0

        def __iter__(self):
            return self

        def __next__(self):
            if self._index >= len(self._city_obj):
                raise StopIteration
            else:
                item = self._city_obj._cities[self._index]
                self._index += 1
                return item

迭代器有__iter__和__next__,可迭代对象有__iter__,所以我们可以说迭代器也是可迭代对象,但它们是耗尽的可迭代对象。另一方面,迭代对象永远不会耗尽 因为它们总是返回一个新的迭代器,然后用于迭代

你注意到可迭代器代码的主要部分是在迭代器中,而可迭代器本身只不过是一个额外的层,允许我们创建和访问迭代器。

在可迭代对象上迭代

Python有一个内置的函数iter(),它调用__iter__()。当我们遍历一个可迭代对象时,Python调用iter(),它返回一个迭代器,然后它开始使用迭代器的__next__()来遍历数据。

注意,在上面的例子中,Cities创建了一个可迭代对象,但它不是一个序列类型,这意味着我们不能通过索引获得一个城市。为了解决这个问题,我们应该将__get_item__添加到Cities类中。

class Cities:
    def __init__(self):
        self._cities = ['New York', 'Newark', 'Budapest', 'Newcastle']
        
    def __len__(self):
        return len(self._cities)
    
    def __getitem__(self, s): # now a sequence type
        return self._cities[s]
    
    def __iter__(self):
        return self.CityIterator(self)
    
    class CityIterator:
        def __init__(self, city_obj):
            self._city_obj = city_obj
            self._index = 0

        def __iter__(self):
            return self

        def __next__(self):
            if self._index >= len(self._city_obj):
                raise StopIteration
            else:
                item = self._city_obj._cities[self._index]
                self._index += 1
                return item

iterable是一个具有iter()方法的对象,该方法返回一个迭代器。这是可以循环的。 示例:列表是可迭代的,因为我们可以遍历列表BUT不是迭代器 迭代器是一个可以从中获取迭代器的对象。它是一个具有状态的对象,以便在迭代过程中记住它所处的位置

要查看对象是否有iter()方法,可以使用下面的函数。

ls = ['hello','bye']
print(dir(ls))

输出

['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

正如你所看到的有iter(),这意味着它是一个可迭代对象,但不包含next()方法,这是迭代器对象的一个特征

无论何时在Python中使用for循环或map或列表推导式,都会自动调用next方法以从迭代中获取每一项

iterable是一个具有__iter__()方法的对象。它可以迭代多次,比如list()和tuple()。

迭代器是进行迭代的对象。它由__iter__()方法返回,通过自己的__iter__()方法返回自身,并有一个next()方法(3.x中的__next__())。

迭代是调用next()响应的过程。__next__()直到引发StopIteration。

例子:

>>> a = [1, 2, 3] # iterable
>>> b1 = iter(a) # iterator 1
>>> b2 = iter(a) # iterator 2, independent of b1
>>> next(b1)
1
>>> next(b1)
2
>>> next(b2) # start over, as it is the first call to b2
1
>>> next(b1)
3
>>> next(b1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
>>> b1 = iter(a) # new one, start over
>>> next(b1)
1

在处理可迭代对象和迭代器之前,决定可迭代对象和迭代器的主要因素是序列

序列:序列是数据的集合

Iterable: Iterable是支持__iter__方法的序列类型对象。

Iter方法:Iter方法以序列为输入,创建一个对象,称为迭代器

迭代器:迭代器是调用next方法和横向遍历序列的对象。在调用下一个方法时,它返回当前遍历的对象。

例子:

x=[1,2,3,4]

X是一个由数据集合组成的序列

y=iter(x)

在调用iter(x)时,只有当x对象有iter方法时,它才会返回一个迭代器,否则会引发异常。如果返回迭代器,则y的赋值如下:

y=[1,2,3,4]

因为y是一个迭代器,所以它支持next()方法

在调用next方法时,它逐个返回列表中的各个元素。

返回序列的最后一个元素后,如果再次调用下一个方法,将引发StopIteration错误

例子:

>>> y.next()
1
>>> y.next()
2
>>> y.next()
3
>>> y.next()
4
>>> y.next()
StopIteration