Python中的“iterable”、“iterator”和“iteration”是什么?它们是如何定义的?
当前回答
在处理可迭代对象和迭代器之前,决定可迭代对象和迭代器的主要因素是序列
序列:序列是数据的集合
Iterable: Iterable是支持__iter__方法的序列类型对象。
Iter方法:Iter方法以序列为输入,创建一个对象,称为迭代器
迭代器:迭代器是调用next方法和横向遍历序列的对象。在调用下一个方法时,它返回当前遍历的对象。
例子:
x=[1,2,3,4]
X是一个由数据集合组成的序列
y=iter(x)
在调用iter(x)时,只有当x对象有iter方法时,它才会返回一个迭代器,否则会引发异常。如果返回迭代器,则y的赋值如下:
y=[1,2,3,4]
因为y是一个迭代器,所以它支持next()方法
在调用next方法时,它逐个返回列表中的各个元素。
返回序列的最后一个元素后,如果再次调用下一个方法,将引发StopIteration错误
例子:
>>> y.next()
1
>>> y.next()
2
>>> y.next()
3
>>> y.next()
4
>>> y.next()
StopIteration
其他回答
在处理可迭代对象和迭代器之前,决定可迭代对象和迭代器的主要因素是序列
序列:序列是数据的集合
Iterable: Iterable是支持__iter__方法的序列类型对象。
Iter方法:Iter方法以序列为输入,创建一个对象,称为迭代器
迭代器:迭代器是调用next方法和横向遍历序列的对象。在调用下一个方法时,它返回当前遍历的对象。
例子:
x=[1,2,3,4]
X是一个由数据集合组成的序列
y=iter(x)
在调用iter(x)时,只有当x对象有iter方法时,它才会返回一个迭代器,否则会引发异常。如果返回迭代器,则y的赋值如下:
y=[1,2,3,4]
因为y是一个迭代器,所以它支持next()方法
在调用next方法时,它逐个返回列表中的各个元素。
返回序列的最后一个元素后,如果再次调用下一个方法,将引发StopIteration错误
例子:
>>> y.next()
1
>>> y.next()
2
>>> y.next()
3
>>> y.next()
4
>>> y.next()
StopIteration
对我来说,Python的glossery对这些问题最有帮助,例如对于iterable,它说:
每次能够返回一个成员的对象。可迭代对象的例子包括所有序列类型(如list、str和tuple)和一些非序列类型,如dict、文件对象,以及使用iter()方法或使用实现sequence语义的getitem()方法定义的任何类的对象。
Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(), …). When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to call iter() or deal with iterator objects yourself. The for statement does that automatically for you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and generator.
我不知道这是否对任何人都有帮助,但我总是喜欢在脑子里把概念形象化,以便更好地理解它们。所以,就像我有一个小儿子一样,我用砖块和白纸来想象迭代器/迭代器的概念。
Suppose we are in the dark room and on the floor we have bricks for my son. Bricks of different size, color, does not matter now. Suppose we have 5 bricks like those. Those 5 bricks can be described as an object – let’s say bricks kit. We can do many things with this bricks kit – can take one and then take second and then third, can change places of bricks, put first brick above the second. We can do many sorts of things with those. Therefore this bricks kit is an iterable object or sequence as we can go through each brick and do something with it. We can only do it like my little son – we can play with one brick at a time. So again I imagine myself this bricks kit to be an iterable.
现在请记住,我们是在一个黑暗的房间里。或者几乎是黑暗的。问题是我们看不清这些砖,它们是什么颜色,什么形状等等。所以即使我们想对它们做些什么——也就是迭代它们——我们也不知道要做什么,怎么做,因为太暗了。
我们能做的是靠近第一块砖-作为一个砖套件的元素-我们可以放一张白色荧光纸,以便我们看到第一块砖元素在哪里。每次我们从工具箱中取出一块砖,我们就把这张白纸换成下一块砖,这样就能在黑暗的房间里看到它。这张白纸只不过是一个迭代器。它也是一个对象。而是一个我们可以使用可迭代对象中的元素的对象——bricks工具包。
顺便说一下,这解释了我早期的错误,当我在IDLE中尝试以下操作时,得到了一个TypeError:
>>> X = [1,2,3,4,5]
>>> next(X)
Traceback (most recent call last):
File "<pyshell#19>", line 1, in <module>
next(X)
TypeError: 'list' object is not an iterator
这里的列表X是我们的砖块工具包,但不是一张白纸。我需要先找到一个迭代器:
>>> X = [1,2,3,4,5]
>>> bricks_kit = [1,2,3,4,5]
>>> white_piece_of_paper = iter(bricks_kit)
>>> next(white_piece_of_paper)
1
>>> next(white_piece_of_paper)
2
>>>
不知道有没有帮助,但对我有帮助。如果有人能确认/纠正这个概念的可视化,我会很感激。这会帮助我了解更多。
我不认为你能得到比文档更简单的东西,但我会尝试:
Iterable是可以被迭代的对象。在实践中,它通常是指一个序列,例如,有开始和结束的东西,以及一些贯穿其中所有项目的方法。 您可以将Iterator视为一个辅助伪方法(或伪属性),它给出(或保存)可迭代对象中的下一个(或第一个)项。(实际上它只是一个定义next()方法的对象) 《韦氏词典》对迭代这个词的定义可能是最好的解释:
B:重复指定的计算机指令序列 次数或直到满足条件-比较递归
其他人已经全面地解释了什么是iterable和iterator,所以我将尝试对生成器做同样的事情。
恕我直言,理解生成器的主要问题是“生成器”这个词的混淆用法,因为这个词有两种不同的含义:
作为创建(生成)迭代器的工具, 以返回迭代器的函数形式(即在函数体中包含yield语句), 以生成器表达式的形式 作为使用该工具的结果,即结果迭代器。 (在这个意思中,生成器是迭代器的一种特殊形式——“generator”这个词指出了这个迭代器是如何创建的。)
Generator作为第一种工具:
In[2]: def my_generator():
...: yield 100
...: yield 200
In[3]: my_generator
输出[3]:<function __main__.my_generator()> .my_generator(
In[4]: type(my_generator)
[4]:函数
生成器作为使用此工具的结果(即迭代器):
In[5]: my_iterator = my_generator()
In[6]: my_iterator
输出[6]:<生成器对象my_generator at 0x00000000053EAE48>
In[7]: type(my_iterator)
[7]:发电机
Generator作为第二种类型的工具-与该工具的结果迭代器难以区分:
In[8]: my_gen_expression = (2 * i for i in (10, 20))
In[9]: my_gen_expression
Out[9]: <generator object <genexpr> at 0x000000000542C048>
In[10]: type(my_gen_expression)
[10]:发电机
推荐文章
- 如何在Python中进行热编码?
- 如何嵌入HTML到IPython输出?
- 在Python生成器上使用“send”函数的目的是什么?
- 是否可以将已编译的.pyc文件反编译为.py文件?
- Django模型表单对象的自动创建日期
- 在Python中包装长行
- 如何计算两个时间串之间的时间间隔
- 我如何才能找到一个Python函数的参数的数量?
- 您可以使用生成器函数来做什么?
- 将Python诗歌与Docker集成
- 提取和保存视频帧
- 使用请求包时出现SSL InsecurePlatform错误
- 如何检索Pandas数据帧中的列数?
- except:和except的区别:
- 错误:“字典更新序列元素#0的长度为1;2是必需的”