Python中的“iterable”、“iterator”和“iteration”是什么?它们是如何定义的?


当前回答

这是另一个使用collections.abc的视图。这个视图在第二次或以后可能会有用。

从集合。ABC我们可以看到下面的层次结构:

builtins.object
    Iterable
        Iterator
            Generator

例如,Generator是由Iterator派生的Iterable是由基对象派生的。

因此,

Every iterator is an iterable, but not every iterable is an iterator. For example, [1, 2, 3] and range(10) are iterables, but not iterators. x = iter([1, 2, 3]) is an iterator and an iterable. A similar relationship exists between Iterator and Generator. Calling iter() on an iterator or a generator returns itself. Thus, if it is an iterator, then iter(it) is it is True. Under the hood, a list comprehension like [2 * x for x in nums] or a for loop like for x in nums:, acts as though iter() is called on the iterable (nums) and then iterates over nums using that iterator. Hence, all of the following are functionally equivalent (with, say, nums=[1, 2, 3]): for x in nums: for x in iter(nums): for x in iter(iter(nums)): for x in iter(iter(iter(iter(iter(nums))))):

其他回答

迭代是一个通用术语,指一个接一个地获取某物的每一项。任何时候使用循环,显式或隐式,遍历一组项,这就是迭代。

在Python中,iterable和iterator有特定的含义。

iterable是一个具有__iter__方法的对象,该方法返回一个迭代器,或者定义了__getitem__方法,该方法可以接受从0开始的顺序索引(并在索引不再有效时引发IndexError)。iterable是一个你可以从中获取迭代器的对象。

迭代器是具有next (Python 2)或__next__ (Python 3)方法的对象。

无论何时在Python中使用for循环、map或列表推导式等,都会自动调用下一个方法从迭代器中获取每一项,从而完成迭代过程。

开始学习的一个好地方是教程的迭代器部分和标准类型页面的迭代器类型部分。在您理解了基础知识之后,请尝试函数式编程HOWTO中的迭代器部分。

iterable = [1, 2] 

iterator = iter(iterable)

print(iterator.__next__())   

print(iterator.__next__())   

so,

Iterable是一个可以循环的对象。例如,列表,字符串,元组等。 在iterable对象上使用iter函数将返回一个迭代器对象。 现在这个迭代器对象有一个名为__next__的方法(在Python 3中,或者在Python 2中只是next),通过它你可以访问iterable的每个元素。

所以, 以上代码的输出为:

1

2

这是另一个使用collections.abc的视图。这个视图在第二次或以后可能会有用。

从集合。ABC我们可以看到下面的层次结构:

builtins.object
    Iterable
        Iterator
            Generator

例如,Generator是由Iterator派生的Iterable是由基对象派生的。

因此,

Every iterator is an iterable, but not every iterable is an iterator. For example, [1, 2, 3] and range(10) are iterables, but not iterators. x = iter([1, 2, 3]) is an iterator and an iterable. A similar relationship exists between Iterator and Generator. Calling iter() on an iterator or a generator returns itself. Thus, if it is an iterator, then iter(it) is it is True. Under the hood, a list comprehension like [2 * x for x in nums] or a for loop like for x in nums:, acts as though iter() is called on the iterable (nums) and then iterates over nums using that iterator. Hence, all of the following are functionally equivalent (with, say, nums=[1, 2, 3]): for x in nums: for x in iter(nums): for x in iter(iter(nums)): for x in iter(iter(iter(iter(iter(nums))))):

iterable是一个具有iter()方法的对象,该方法返回一个迭代器。这是可以循环的。 示例:列表是可迭代的,因为我们可以遍历列表BUT不是迭代器 迭代器是一个可以从中获取迭代器的对象。它是一个具有状态的对象,以便在迭代过程中记住它所处的位置

要查看对象是否有iter()方法,可以使用下面的函数。

ls = ['hello','bye']
print(dir(ls))

输出

['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

正如你所看到的有iter(),这意味着它是一个可迭代对象,但不包含next()方法,这是迭代器对象的一个特征

无论何时在Python中使用for循环或map或列表推导式,都会自动调用next方法以从迭代中获取每一项

我不认为你能得到比文档更简单的东西,但我会尝试:

Iterable是可以被迭代的对象。在实践中,它通常是指一个序列,例如,有开始和结束的东西,以及一些贯穿其中所有项目的方法。 您可以将Iterator视为一个辅助伪方法(或伪属性),它给出(或保存)可迭代对象中的下一个(或第一个)项。(实际上它只是一个定义next()方法的对象) 《韦氏词典》对迭代这个词的定义可能是最好的解释:

B:重复指定的计算机指令序列 次数或直到满足条件-比较递归