Python中的“iterable”、“iterator”和“iteration”是什么?它们是如何定义的?
当前回答
这是另一个使用collections.abc的视图。这个视图在第二次或以后可能会有用。
从集合。ABC我们可以看到下面的层次结构:
builtins.object
Iterable
Iterator
Generator
例如,Generator是由Iterator派生的Iterable是由基对象派生的。
因此,
Every iterator is an iterable, but not every iterable is an iterator. For example, [1, 2, 3] and range(10) are iterables, but not iterators. x = iter([1, 2, 3]) is an iterator and an iterable. A similar relationship exists between Iterator and Generator. Calling iter() on an iterator or a generator returns itself. Thus, if it is an iterator, then iter(it) is it is True. Under the hood, a list comprehension like [2 * x for x in nums] or a for loop like for x in nums:, acts as though iter() is called on the iterable (nums) and then iterates over nums using that iterator. Hence, all of the following are functionally equivalent (with, say, nums=[1, 2, 3]): for x in nums: for x in iter(nums): for x in iter(iter(nums)): for x in iter(iter(iter(iter(iter(nums))))):
其他回答
其他人已经全面地解释了什么是iterable和iterator,所以我将尝试对生成器做同样的事情。
恕我直言,理解生成器的主要问题是“生成器”这个词的混淆用法,因为这个词有两种不同的含义:
作为创建(生成)迭代器的工具, 以返回迭代器的函数形式(即在函数体中包含yield语句), 以生成器表达式的形式 作为使用该工具的结果,即结果迭代器。 (在这个意思中,生成器是迭代器的一种特殊形式——“generator”这个词指出了这个迭代器是如何创建的。)
Generator作为第一种工具:
In[2]: def my_generator():
...: yield 100
...: yield 200
In[3]: my_generator
输出[3]:<function __main__.my_generator()> .my_generator(
In[4]: type(my_generator)
[4]:函数
生成器作为使用此工具的结果(即迭代器):
In[5]: my_iterator = my_generator()
In[6]: my_iterator
输出[6]:<生成器对象my_generator at 0x00000000053EAE48>
In[7]: type(my_iterator)
[7]:发电机
Generator作为第二种类型的工具-与该工具的结果迭代器难以区分:
In[8]: my_gen_expression = (2 * i for i in (10, 20))
In[9]: my_gen_expression
Out[9]: <generator object <genexpr> at 0x000000000542C048>
In[10]: type(my_gen_expression)
[10]:发电机
iterable是一个具有__iter__()方法的对象。它可以迭代多次,比如list()和tuple()。
迭代器是进行迭代的对象。它由__iter__()方法返回,通过自己的__iter__()方法返回自身,并有一个next()方法(3.x中的__next__())。
迭代是调用next()响应的过程。__next__()直到引发StopIteration。
例子:
>>> a = [1, 2, 3] # iterable
>>> b1 = iter(a) # iterator 1
>>> b2 = iter(a) # iterator 2, independent of b1
>>> next(b1)
1
>>> next(b1)
2
>>> next(b2) # start over, as it is the first call to b2
1
>>> next(b1)
3
>>> next(b1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
>>> b1 = iter(a) # new one, start over
>>> next(b1)
1
迭代对象有一个__iter__方法,每次都会实例化一个新的迭代器。 迭代器实现了一个__next__方法返回单个项,以及一个__iter__方法返回self。 因此,迭代器也是可迭代的,但可迭代的不是迭代器。
卢西亚诺·拉马略,流利的蟒蛇。
这是另一个使用collections.abc的视图。这个视图在第二次或以后可能会有用。
从集合。ABC我们可以看到下面的层次结构:
builtins.object
Iterable
Iterator
Generator
例如,Generator是由Iterator派生的Iterable是由基对象派生的。
因此,
Every iterator is an iterable, but not every iterable is an iterator. For example, [1, 2, 3] and range(10) are iterables, but not iterators. x = iter([1, 2, 3]) is an iterator and an iterable. A similar relationship exists between Iterator and Generator. Calling iter() on an iterator or a generator returns itself. Thus, if it is an iterator, then iter(it) is it is True. Under the hood, a list comprehension like [2 * x for x in nums] or a for loop like for x in nums:, acts as though iter() is called on the iterable (nums) and then iterates over nums using that iterator. Hence, all of the following are functionally equivalent (with, say, nums=[1, 2, 3]): for x in nums: for x in iter(nums): for x in iter(iter(nums)): for x in iter(iter(iter(iter(iter(nums))))):
我不认为你能得到比文档更简单的东西,但我会尝试:
Iterable是可以被迭代的对象。在实践中,它通常是指一个序列,例如,有开始和结束的东西,以及一些贯穿其中所有项目的方法。 您可以将Iterator视为一个辅助伪方法(或伪属性),它给出(或保存)可迭代对象中的下一个(或第一个)项。(实际上它只是一个定义next()方法的对象) 《韦氏词典》对迭代这个词的定义可能是最好的解释:
B:重复指定的计算机指令序列 次数或直到满足条件-比较递归
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 数据挖掘中分类和聚类的区别?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if